وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Predictive Analytics, 2nd Edition

سرفصل های دوره

Introduction
  • 001. Predictive Analytics Introduction

  • Lesson 1 Introduction to Predictive Analytics
  • 001. Topics
  • 002. 1.1 What Is Analytics and Where Does Data Mining Fit In
  • 003. 1.2 Popularity and Application Areas of Analytics
  • 004. 1.3 An Analytics Timeline and a Simple Taxonomy
  • 005. 1.4 Cutting Edge of Analytics IBM Watson
  • 006. 1.5 Real-world Analytics Applications

  • Lesson 2 Introduction to Predictive Analytics and Data Mining
  • 001. Topics
  • 002. 2.1 What Is Data Mining, and What Is It Not
  • 003. 2.2 The Most Common Data Mining Applications and Tools
  • 004. 2.3 Demonstration of Predictive Modeling with Python
  • 005. 2.4 Demonstration of Predictive Modeling with KNIME

  • Lesson 3 The Data Mining Process
  • 001. Topics
  • 002. 3.1 The Knowledge Discovery in Databases (KDD) Process
  • 003. 3.2 Cross-Industry Standard Process for Data Mining (CRISP-DM)
  • 004. 3.3 Sample, Explore, Modify, Model, and Assess (SEMMA) Process and Six Sigma Process
  • 005. 3.4 Demonstration of Data Mining Tools IBM SPSS Modeler and R

  • Lesson 4 Data and Methods in Data Mining
  • 001. Topics
  • 002. 4.1 The Nature of Data in Data Mining
  • 003. 4.2 Data Mining Methods Predictive versus Descriptive
  • 004. 4.3 Evaluation Methods in Data Mining
  • 005. 4.4 Classification with Decision Trees
  • 006. 4.5 Clustering with the k-means Algorithm
  • 007. 4.6 Association Analysis with the Apriori Algorithm

  • Lesson 5 Data Mining Algorithms
  • 001. Topics
  • 002. 5.1 Nearest Neighbor Algorithm for Prediction Modeling
  • 003. 5.2 Artificial Neural Networks (ANN) and Support Vector Machines (SVM)
  • 004. 5.3 Linear Regression and Logistic Regression
  • 005. 5.4 Demonstration of Linear Regression with Python and KNIME

  • Lesson 6 Text Analytics and Text Mining
  • 001. Topics
  • 002. 6.1 Introduction to Text Mining and Natural Language Processing
  • 003. 6.2 Text Mining Applications and Text Mining Process
  • 004. 6.3 Text Mining Tools and Demonstration of Text Mining Using Rapid Miner
  • 005. 6.4 Text Mining Tools and Demonstration of Sentiment Analysis and Topic Modeling with KNIME

  • Lesson 7 Big Data Analytics
  • 001. Topics
  • 002. 7.1 What Is Big Data and Where Does It Come From
  • 003. 7.2 Fundamental Concepts and Technologies of Big Data
  • 004. 7.3 Who Are Data Scientists and Where Do They Come From
  • 005. 7.4 Demonstration of Big Data Analytics (SAS Visual Analytics)

  • Lesson 8 Predictive Analytics Best Practices
  • 001. Topics
  • 002. 8.1 Defining Model Ensembles and Their Pros and Cons
  • 003. 8.2 Bias-Variance Tradeoff in Predictive Analytics
  • 004. 8.3 Treating the Data-Imbalance Problem with Over- and Undersampling
  • 005. 8.4 Explainable MLAIPredictive Analytics
  • 006. 8.5 Showcasing Better Practices with a Comprehensive Model of Customer Churn Analysis

  • Summary
  • 001. Predictive Analytics Summary
  • 179,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 8648
    حجم: 1873 مگابایت
    مدت زمان: 533 دقیقه
    تاریخ انتشار: ۱۳ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    179,000 تومان
    افزودن به سبد خرید