وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Predictive Analytics, 2nd Edition

سرفصل های دوره

Introduction
  • 001. Predictive Analytics Introduction

  • Lesson 1 Introduction to Predictive Analytics
  • 001. Topics
  • 002. 1.1 What Is Analytics and Where Does Data Mining Fit In
  • 003. 1.2 Popularity and Application Areas of Analytics
  • 004. 1.3 An Analytics Timeline and a Simple Taxonomy
  • 005. 1.4 Cutting Edge of Analytics IBM Watson
  • 006. 1.5 Real-world Analytics Applications

  • Lesson 2 Introduction to Predictive Analytics and Data Mining
  • 001. Topics
  • 002. 2.1 What Is Data Mining, and What Is It Not
  • 003. 2.2 The Most Common Data Mining Applications and Tools
  • 004. 2.3 Demonstration of Predictive Modeling with Python
  • 005. 2.4 Demonstration of Predictive Modeling with KNIME

  • Lesson 3 The Data Mining Process
  • 001. Topics
  • 002. 3.1 The Knowledge Discovery in Databases (KDD) Process
  • 003. 3.2 Cross-Industry Standard Process for Data Mining (CRISP-DM)
  • 004. 3.3 Sample, Explore, Modify, Model, and Assess (SEMMA) Process and Six Sigma Process
  • 005. 3.4 Demonstration of Data Mining Tools IBM SPSS Modeler and R

  • Lesson 4 Data and Methods in Data Mining
  • 001. Topics
  • 002. 4.1 The Nature of Data in Data Mining
  • 003. 4.2 Data Mining Methods Predictive versus Descriptive
  • 004. 4.3 Evaluation Methods in Data Mining
  • 005. 4.4 Classification with Decision Trees
  • 006. 4.5 Clustering with the k-means Algorithm
  • 007. 4.6 Association Analysis with the Apriori Algorithm

  • Lesson 5 Data Mining Algorithms
  • 001. Topics
  • 002. 5.1 Nearest Neighbor Algorithm for Prediction Modeling
  • 003. 5.2 Artificial Neural Networks (ANN) and Support Vector Machines (SVM)
  • 004. 5.3 Linear Regression and Logistic Regression
  • 005. 5.4 Demonstration of Linear Regression with Python and KNIME

  • Lesson 6 Text Analytics and Text Mining
  • 001. Topics
  • 002. 6.1 Introduction to Text Mining and Natural Language Processing
  • 003. 6.2 Text Mining Applications and Text Mining Process
  • 004. 6.3 Text Mining Tools and Demonstration of Text Mining Using Rapid Miner
  • 005. 6.4 Text Mining Tools and Demonstration of Sentiment Analysis and Topic Modeling with KNIME

  • Lesson 7 Big Data Analytics
  • 001. Topics
  • 002. 7.1 What Is Big Data and Where Does It Come From
  • 003. 7.2 Fundamental Concepts and Technologies of Big Data
  • 004. 7.3 Who Are Data Scientists and Where Do They Come From
  • 005. 7.4 Demonstration of Big Data Analytics (SAS Visual Analytics)

  • Lesson 8 Predictive Analytics Best Practices
  • 001. Topics
  • 002. 8.1 Defining Model Ensembles and Their Pros and Cons
  • 003. 8.2 Bias-Variance Tradeoff in Predictive Analytics
  • 004. 8.3 Treating the Data-Imbalance Problem with Over- and Undersampling
  • 005. 8.4 Explainable MLAIPredictive Analytics
  • 006. 8.5 Showcasing Better Practices with a Comprehensive Model of Customer Churn Analysis

  • Summary
  • 001. Predictive Analytics Summary
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 8648
    حجم: 1873 مگابایت
    مدت زمان: 533 دقیقه
    تاریخ انتشار: 13 فروردین 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید