وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Natural Language Processing for Speech and Text: From Beginner to Advanced

سرفصل های دوره

With the recent surge in large language models, it's particularly relevant to explore the evolution of NLP techniques, from traditional methods to current industry standards. In this course, Wuraola Oyewusi—an experienced data scientist and machine learning and artificial intelligence professional—helps you build a strong foundation in natural language processing (NLP) concepts and addresses the end-to-end application of NLP. Learn about both text and speech data while you explore the theoretical background of NLP concepts, the historical evolution of NLP techniques, and current applications of NLP representation techniques for both text and speech data. Dive into code-based practice exercises for preprocessing techniques and tasks for both text and speech data. Plus, check out a wide range of Python libraries, including NLTK, spaCy, Hugging Face, Transformers, librosa, scikit-learn, gensim, and torchaudio.


01 - Introduction
  • 01 - Fundamentals of natural language processing
  • 02 - NLP course strategy

  • 02 - 1. Introduction to Natural Language Processing (NLP)
  • 01 - What is natural language processing (NLP)
  • 02 - What are sequences
  • 03 - Applications of natural language processing in text data
  • 04 - Applications of natural language processing in speech data
  • 05 - Historical evolution of NLP tasks and techniques
  • 06 - How computers understand sequences in NLP

  • 03 - 2. Natural Language Processing for Text Techniques
  • 01 - Text preprocessing
  • 02 - Text preprocessing using NLTK
  • 03 - Text representation
  • 04 - Text representation One-hot encoding
  • 05 - One-hot encoding using scikit-learn
  • 06 - Text representation N-grams
  • 07 - N-grams representation using NLTK
  • 08 - Text representation Bag-of-words (BoW)
  • 09 - Bag-of-words representation using scikit-learn
  • 10 - Text representation Term frequency-inverse document frequency (TF-IDF)
  • 11 - TF-IDF representation using scikit-learn
  • 12 - Text representation Word embeddings
  • 13 - Word2vec embedding using Gensim
  • 14 - Embedding with pretrained spaCy model
  • 15 - Sentence embedding using the Sentence Transformers library
  • 16 - Text representation Pre-trained language models (PLMs)
  • 17 - Pre-trained language models using Transformers

  • 04 - 3. Natural Language Processing for Speech Techniques
  • 01 - Speech representation Mel-frequency cepstral coefficients
  • 02 - Mel-frequency cepstral coefficients (MFCCs) using librosa
  • 03 - Speech representation Linear predictive cepstral coefficients (LPCCs)
  • 04 - Linear predictive coding (LPC) using librosa
  • 05 - Speech representation Gammatone filterbank features
  • 06 - Gammatone filterbank features using librosa
  • 07 - Speech representation Spectrograms
  • 08 - Spectrograms using fast Fourier transform (FFT) in librosa
  • 09 - Speech representation Speech embeddings
  • 10 - Speech embeddings using wav2vec in Transformers

  • 05 - 4. Applied Natural Language Processing Algorithms and Tasks
  • 01 - Algorithms for natural language processing tasks
  • 02 - Types of algorithms in natural language processing
  • 03 - Rule-based Regular expressions
  • 04 - Regular expression tasks using the re library
  • 05 - Rule-based Rule-based parsing
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 42644
    حجم: 241 مگابایت
    مدت زمان: 121 دقیقه
    تاریخ انتشار: ۲۷ دی ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید