وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Mega Python – Pandas, Numpy, ML, APIs, GraphQL, AWS, PySpark

سرفصل های دوره

One Mega course which covers programming, web development, APIs, DevOps, Financial World, Machine Learning and much more


1. Getting Started
  • 1. Install python
  • 2. Python3 and python.html
  • 3. The python interpreter
  • 4. Writing our first python code
  • 5. Python IDLE program
  • 6. Installing Anaconda
  • 7. Create your first python notebook
  • 8. Jupyter Notebook - The Dashboard
  • 9. Jupyter Notebook - Coding commands
  • 10. Setting up IDE - Visual Studio Code

  • 2. Python Strings and Numbers
  • 1.1 variables.zip
  • 1. Variables and Strings
  • 2.1 comments.zip
  • 2. Working with Comments
  • 3. How to load sample jupyter notebook
  • 4.1 strings.zip
  • 4. Working with Strings and Numbers
  • 5.1 strings.zip
  • 5. String functions
  • 6.1 string formatting.zip
  • 6. String formatting
  • 7.1 manipulating strings.zip
  • 7. Manipulating String
  • 8.1 intro to numbers.zip
  • 8. Intro to Numbers
  • 9.1 working with numbers.zip
  • 9. Fun with Numbers
  • 10.1 working with numbers.zip
  • 10. Numbers - modulus and floor division
  • 11.1 built-in functions for numbers.zip
  • 11. Built-in functions for numbers
  • 12.1 math functions in math module.zip
  • 12. More math functions with math module
  • 13.1 formatting numbers.zip
  • 13. Formatting Numbers
  • 14. The double equality sign
  • 15.1 getting user input.zip
  • 15. Getting User Input
  • 16.1 python operators.zip
  • 16. Python Operators
  • 17.1 python operators.zip
  • 17. Logical Operators
  • 18. Comparison Operators
  • 19.1 boolean - logical operators.zip
  • 19. Boolean Operators

  • 3. Python List
  • 1.1 list.zip
  • 1. Python List
  • 2.1 list.zip
  • 2. Adding and removing elements in a list
  • 3. Popping items from a list
  • 4. Removing an item by value
  • 5. Sorting a list permanently or temporarily
  • 6. Reverse a list
  • 7. Avoiding Index errors
  • 8.1 list constructor.zip
  • 8. The list() constructor
  • 9.1 working with list.zip
  • 9. Looping an entire list
  • 10. Indentation
  • 11.1 numerical list.zip
  • 11. Numerical List
  • 12. min, max and sum functions
  • 13.1 negative indexing.zip
  • 13. Negative Indexing
  • 14.1 multi-dimentional list.zip
  • 14. Multi-diementional list
  • 15.1 range function.zip
  • 15. Range function
  • 16.1 looping multi-dimentional list.zip
  • 16. Looping multi-dimentional list
  • 17.1 slicing of a list.zip
  • 17. Slicing of a list
  • 18.1 list slicing - part 2.zip
  • 18. Slicing a List Part 2
  • 19.1 iterate over multiple list at a time.zip
  • 19. Iterate over multiple list
  • 20.1 to check if an item exist in a list.screenflow.zip
  • 20. Check if an item exist or not
  • 21.1 Count total occurance of an item.screenflow.zip
  • 21. Count total occurrence of an item
  • 22.1 membership operators.zip
  • 22. Membership operators
  • 23.1 find most common item.zip
  • 23. Find most common item
  • 24.1 nested list.zip
  • 24. Nested List
  • 25.1 list comprehensions.zip
  • 25. List Comprehensions
  • 26. List Comprehensions with if clause
  • 27. Nested List Comprehensions
  • 28.1 flatten a list of lists.zip
  • 28. Flatten a list of lists
  • 29.1 remove duplicates from the list.zip
  • 29. Remove duplicates from the list
  • 30.1 combine lists.zip
  • 30. Combine lists

  • 4. Python Tuple
  • 1.1 python tuple.zip
  • 1. Introduction to Tuple
  • 2. tuple constructor
  • 3. Access tuple items
  • 4. Nested Tuples
  • 5. Slicing a tuple
  • 6. Change Tuple item
  • 7. Writing over a tuple
  • 8. Concatenation and Repetition
  • 9. Iterate through a tuple
  • 10. Tuple Sorting
  • 11. Tuple Packing & Unpacking
  • 12.1 tuples count() method.zip
  • 12. Tuple count() method
  • 13.1 tuple index method.zip
  • 13. Tuple index() method
  • 14.1 tuple functions.zip
  • 14. all() function with Tuples
  • 15. any() function with tuples
  • 16. sum() function with tuples
  • 17. enumerate() function with tuples

  • 5. Python Set
  • 1. Create, Set Constructor, Add and remove methods
  • 2. Find Length, clear all elements, and iterate all elements
  • 3. Check if an item exist or not
  • 4. pop method

  • 6. NUMPY
  • 1. Introduction to Numpy arrays
  • 2. array attributes - shape
  • 3. array attributes - ndim, size, dtype, nbytes
  • 4. Array Data types
  • 5. Create arrays from constant values
  • 6. Create arrays from space values
  • 7. Create arrays from set diagnals
  • 8. Create arrays from functions
  • 9. Indexing and slicing - Single dimension array
  • 10. Indexing and slicing - Multi-dimension array
  • 11. Creating views and copies
  • 12. Array Indexing
  • 13. Array indexing - multi dimensional array
  • 14. Boolean indexing
  • 15. Reshaping Numpy arrays
  • 16. Joining arrays
  • 17. Splitting arrays
  • 18. Searching arrays
  • 19. Sorting arrays
  • 20. Sorting techniques
  • 21. Sorting a matrix
  • 22. Iterating 1-D, 2D, and 3-D arrays
  • 23. Iterating arrays via nditer(), ndenumerate()
  • 24. Arithmetic operations
  • 25. Mathematical functions
  • 26. Comparing arrays
  • 27. Conditional functions
  • 28. Aggregation functions

  • 7. PANDAS
  • 1. Creating a DataFrame from list or dictionaries
  • 2. Creating an empty DataFrame
  • 3. Create a dataframe from lists of lists
  • 4. Rename DataFrame columns and indexes
  • 5. Create a Dataframe from list of dictionaries
  • 6. Create a Dataframe from tuples with zip function

  • 8. Pandas Tricks
  • 1.1 pandas_tricks.zip
  • 1. Check Equality
  • 2. Using asset_series for equality
  • 3. Calculate memory usage
  • 4. No of words in a column
  • 5. Convert one set of values to another
  • 6. Convert continuous data into categorical data
  • 7. Create a datetime column from multiple columns
  • 8. Resample by date time column
  • 9. Create a cross-tabluation
  • 10. Fill missing values using interpolation
  • 11. Transpose a wide DataFrame
  • 12. Create example DataFrames
  • 13. Identify missing rows
  • 14. Use query to avoid intermediate variables
  • 15. Reshape a DataFrame from wide to long format

  • 9. BUILDING APIs
  • 1. Introduction to FastAPI
  • 2. FastAPI installation and first route
  • 3. Path parameters
  • 4. Built-in documentation
  • 5. Query Parameters
  • 6. Request Body and Pydantic models
  • 7. Setup SQLAlchemy, Postgresql on cloud
  • 8. Setup Database configurations
  • 9. Setup SQLAlchemy models
  • 10. Setup Pydantic schemas
  • 11. Populate all tables on postgreSQL
  • 12. PUT Request
  • 13. Defining HTTP Status codes

  • 10. Python with GraphQL
  • 1. What is GraphQL
  • 2. Setting up GraphQL with Python Flask Server
  • 3. Adding a cloud postgreSQL database
  • 4. Creating a model
  • 5. Creating a GraphQL Schema
  • 6. GraphQL with Ariadne library
  • 7. Setup Apollo GraphQL IDE
  • 8. Write resolver for list all posts
  • 9. Write resolver to list a query by id
  • 10. Mutation - Create a new post
  • 11. Mutation - Update a post
  • 12. Mutation - Delete a post

  • 11. Python with Amazon DynamoDB
  • 1. Create a table
  • 2. Get an item
  • 3. Delete an item
  • 4. Add an item
  • 5. Update an item

  • 12. Python with Apache Cassandra
  • 1. Introduction to Cassandra
  • 2. Setup Docker to spin cassandra
  • 3. Read data
  • 4. Read data via prepare statement
  • 5. Write data synchronously and asynchronously
  • 6. Docker cleanup

  • 13. DATA VISUALIZATIONS
  • 1. Introduction.html

  • 14. Data Visualization with Dash
  • 1.1 dash_medal_dashboard.zip
  • 1. Introduction to Dash
  • 2. Creating a quick Dash interactive application
  • 3. Create a medal dashboard app - setting up layout
  • 4. Creating Layout Components - Dropdown
  • 5. Callback functions
  • 6. Introduction.html
  • 7. Create a Barchart component
  • 8. Create interactive bar chart with callbacks
  • 9. Applying styling
  • 10.1 dash_callback.zip
  • 10. Dash Callbacks - Simple
  • 11. Callback function with graph and a slider
  • 12. Callback function with multiple inputs
  • 13. Cross Filtering - Interactive Graphing

  • 15. Building Interactive data apps with Streamlit
  • 1.1 app.zip
  • 1. Crypto Currency Market Dashboard Application

  • 16. Data Visualization with Plotly
  • 1.1 data_visualization_with_plotly.zip
  • 1. Scatter plots
  • 2. Bar Chart
  • 3. Facet Plots
  • 4. Facet Plot Grid
  • 5. Adding lines to Facets
  • 6. Pie Charts
  • 7. Bar Chart - Horizontal
  • 8. Gant Chart
  • 9. Sunburst Chart
  • 10. Treemaps
  • 11. Financial Charts
  • 12. Histogram
  • 13. Animations

  • 17. REALTIME DATA APPLICATIONS
  • 1. Welcome to Realtime Data Applications.html

  • 18. Realtime Blog Activity Feed
  • 1. Setup the system with Pusher
  • 2. Setup Pusher and Routes
  • 3. Define backend API endpoints
  • 4. Create the blog post view
  • 5. Handling form events for add, delete and deactivate
  • 6. Add pusher events to blog post view
  • 7. How data is broadcast via pusher
  • 8. View Realtime blog post events

  • 19. Asynchronous programming in Python
  • 1.1 app.zip
  • 1.2 get_urls_async.zip
  • 1.3 test_async.zip
  • 1.4 urls.zip
  • 1. Coding program to run sequentially
  • 2. Async programming with aiohttp and asyncio
  • 3. 100s of Web site fetching asynchronously

  • 20. DATA SCIENCE AND MACHINE LEARNING
  • 1. Introduction to Machine Learning.html
  • 2. Machine Learning Terminologies
  • 3. Machine Learning Types
  • 4.1 ml - data analysis using seaborn.zip
  • 4. Data Exploration using seaborn
  • 5.1 ml - data processing.zip
  • 5. Data Processing
  • 6.1 ml - simple linear regression.zip
  • 6. Create your own Simple Linear Regression

  • 21. DEV OPS
  • 1. Introduction.html

  • 22. Amazon S3 Services
  • 1. Introduction.html
  • 2.1 tutorial-s3.zip
  • 2. Using Python for AWS S3
  • 3. S3 - List Buckets
  • 4. S3 - List objects
  • 5. S3 - Upload a file
  • 6. S3 - Download a file
  • 7. S3 - Create a bucket
  • 8. S3 - Get object metadata

  • 23. Amazon SNS Services
  • 1. Introduction to SNS
  • 2. Create a topic
  • 3. Publish messages

  • 24. AWS Lambda Function
  • 1. What is a Lambda Function
  • 2. Create a function
  • 3. Invoking Lambda function from another function - Create policy
  • 4. Invoking Lambda function from another lambda function

  • 25. AWS Step Functions
  • 1. What are STEP Functions
  • 2. Amazon step language (ASL)
  • 3. Create lambda functions
  • 4. Create state machine and trigger lambda functions

  • 26. PySpark - SparkSQL and Dataframes
  • 1. PySpark
  • 2. Introduction to PySpark
  • 3. Spark Components
  • 4.1 my_pyspark1.zip
  • 4. Setup python spark on google colabs
  • 5. What is a dataframe
  • 6. What is RDD
  • 7.1 pyspark_rdd.zip
  • 7. Creating RDDs
  • 8. Creating Python functions and lambda functions
  • 9. Apply transformation to RDD, map and filter methods
  • 10. flatMap and Set transformations
  • 11. Doing multiple transformations
  • 12.1 pyspark_dataframes.zip
  • 12. PySpark Dataframes
  • 13. Create a dataframe from a schema
  • 14. Create a dataframe from a CSV file
  • 15. Convert PySpark Dataframe to Pandas dataframe
  • 16. SparkSQL - Creating Dataframes
  • 17. SparkSQL - applying groupBy and aggregation data
  • 18. SparkSQL - multiple aggregation and filtering data
  • 19. SparkSQL - filtering data with filter
  • 20. SparkSQL - Apply pure SQL queries
  • 21.1 yahoo finance stock data.zip
  • 21. Get Stock Data from yahoo finance

  • 27. Analyzing Sales Transaction Data
  • 1.1 analyzing_sales_transaction_data.zip
  • 1. Reading Sales transaction data
  • 2. Running queries and find unique values
  • 3. Introduction.html
  • 4. Create custom function to plot heat maps and bar plot
  • 5. Find total sales per payment method
  • 6. Find average unit price per product
  • 7. Find average purchase by client group
  • 8. Find AverageTotal value by weeks and months
  • 9. Find average per client group and warehouse
  • 10. Find average per product group and warehouse
  • 11. Find average per weekmonth and warehouse
  • 12. Find average quantity with month and product group
  • 13. Find correlations

  • 28. Analyzing Employees Turnovers Churn Rates
  • 1. The data and import libraries
  • 2. Quick intro to pywaffle module
  • 3. Import sample data
  • 4. View distinct values and running queries
  • 5. Create a waffle visual to display employee turnover
  • 6. Visualize Employees Satisfaction score
  • 7. Create employees groups per satisfaction bucket
  • 8. Satisfaction Analysis
  • 9. Number of employees vs department
  • 10. Number of project vs employees analysis
  • 11. What is the workload look like for those who left
  • 12. What is the spread of tenure across employee segments
  • 13. # of years employees stayed in the company
  • 14. How long did the employees stay
  • 15. # of years of service per employe segments

  • 29. Global Earthquakes Analysis
  • 1. Get Earthquake data with USGS API
  • 2. Examine structure of the data
  • 3. Summary statistics for categorial columns
  • 4. Get stats for a particular column
  • 5. Selecting column via list comprehensions, get and more
  • 6. Slicing data
  • 7. loc and iloc
  • 8. Filtering information
  • 9. Adding new data and using assign()

  • 30. Monkey Pox Virus - Data Analysis
  • 1.1 monkeypox virus - data analysis.zip
  • 1. Reported cases by country
  • 2. Plot cases distribution by country and city
  • 3. Confirm Cases, and case status per country
  • 4. Analyze frequency of symptomssigns
  • 5. Time series analysis - cases per day

  • 31. Thank You!
  • 1. Your feedback is very valuable!.html
  • 2. Bonus Lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 1502
    حجم: 12240 مگابایت
    مدت زمان: 2251 دقیقه
    تاریخ انتشار: ۲۶ دی ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید