وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Mastering MLOps: Complete course for ML Operations

سرفصل های دوره

Advanced hands-on bootcamp of MLOps with MLFlow, Scikit-learn, CI/CD, Azure, FastAPI, Gradio, SHAP, Docker, DVC, Flask..


1. Introduction to this course
  • 1. Introduction to this course
  • 2. How to get the most out of the course
  • 3.1 Course material.7z
  • 3.2 MLOps Course Slides.pdf
  • 3. Course material.html

  • 2. Challenges and evolution of Machine Learning
  • 1. Introduction to Machine Learning
  • 2. Benefits of Machine Learning
  • 3. MLOps Fundamentals
  • 4. DevOps and DataOps Fundamentals

  • 3. MLOps Fundaments
  • 1. Problems that MLOps solves
  • 2. MLOps Components
  • 3. MLOps Toolbox
  • 4. MLOps stages

  • 4. Installation of tools and libraries
  • 1. How to install libraries and prepare the environment
  • 2. Jupyter Notebook Basics
  • 3. Installing Docker and Ubuntu

  • 5. Productivization and structuring of ML projects
  • 1. Cookiecutter for managing the structure of the Machine Learning model
  • 2. Libraries and tools for project management from start to finish
  • 3. Poetry for dependency management
  • 4. Makefile for automated task execution
  • 5. Hydra to manage YAML configuration files
  • 6. Hydra applied to a Machine Learning project
  • 7. Automatically check and fix code before commit in Git
  • 8. Code review with Black and Flake8 in the pre-commit
  • 9. Code review with Isort and Iterrogate in the Pre-commit and Git integration
  • 10. Automatically generate documentation for ML project

  • 6. MLOps Phase 1 Solution Design
  • 1. Volere design and implementation

  • 7. MLOps Phase 2 Automating the ML Model Cycle
  • 1. AutoML Basics
  • 2. Building a model from start to finish with Pycaret
  • 3. EDA and Advanced Preprocessing with Pycaret
  • 4. Development of advanced models (XGBoost, CatBoost, LightGBM) with Pycaret)
  • 5. Production deployment with Pycaret

  • 8. MLOps phase 2 Model versioning and registration with MLFlow
  • 1. Model registry and versioning with MLFlow
  • 2. Registering a Scikit-Learn model with MLFlow
  • 3. Registering a Pycaret model with MLFlow

  • 9. Versioning dataset with DVC
  • 1. Introduction to DVC
  • 2. DVC commands and process
  • 3. Hands-on lab with DVC
  • 4. DVC Pipelines

  • 10. Code repository with DagsHub, DVC, Git and MLFlow
  • 1. Introduction to DagsHub for the code repository
  • 2. EDA and data preprocessing
  • 3. Training and evaluation of the prototype of the ML model
  • 4. DagsHub account creation
  • 5. Creating the Python environment and dataset
  • 6. Deployment of the model in DagsHub
  • 7. Training and versioning the ML model
  • 8. Improving the model for a production environment
  • 9. Using DVC to version data and models
  • 10. Sending code, data and models to DagsHub
  • 11. Experimentation and registration of experiments in DagsHub
  • 12. Using DagsHub to analyze and compare experiments and models

  • 11. Automated registration and versioning with Pycaret and DagsHub
  • 1. Pycaret and Dagshub integration
  • 2. Hands on laboratory of registering a model and dataset with Pycaret and DagsHub
  • 3. Hands-on Exercise.Development of a model with Pycaret and registration in MLFlow
  • 4. Solution. Development of a model with Pycaret and registration in MLFlow
  • 5. Hands-on exercise. Generating a repository with DagsHub
  • 6. Solution. Generating a repository with DagsHub
  • 7. Hands-on exercise. Data versioning with DVC
  • 8. Solution. Data versioning with DVC
  • 9. Hands-on exercise. Registering the model on a shared MLFlow server
  • 10. Solution. Registering the model on a shared MLFlow server

  • 12. Model interpretability
  • 1. Basics of interpretability with SHAP
  • 2. Interpreting Scikit Learn models with SHAP
  • 3. Interpreting models with SHAP in Pycaret

  • 13. Putting models into production
  • 1. Deploying Models in Production

  • 14. MLOps phase 3 Model serving through APIs
  • 1. Fundamentals of APIs and FastAPI
  • 2. Functions, methods and parameters in FastAPI
  • 3. POST Method, Swagger and Pydantic in FastAPI
  • 4. API development for Scikit-learn model with FastAPI
  • 5. Automated API development with Pycaret

  • 15. MLOps Phase 3 Model serving with Web Applications
  • 1. Serve the model through a Web Application
  • 2. Basic Gradio commands
  • 3. Development of a Gradio web application for Machine Learning
  • 4. Automated web application development with Pycaret
  • 5. Web application development with Streamlit
  • 6. Laboratory Web application development with Streamlit and Altair

  • 16. Flask for application development
  • 1. Flask Fundamentals
  • 2. Building a project from start to finish with Flask
  • 3. Back-end development with Flask and front-end development with HTML and CSS

  • 17. Docker and containers in Machine Learning
  • 1. Containers to isolate our applications
  • 2. Docker and Kubernetes Basics
  • 3. Generating a container for an ML API with Docker
  • 4. Docker to generate a container of a web application from Flask, HTML

  • 18. BentoML for automated development of ML services
  • 1. Introduction to BentoML for generating ML services
  • 2. Generating an ML service with BentoML
  • 3. Putting the service into production with BentoML and Docker
  • 4. BentoML and MLflow integration and custom models
  • 5. GPU, preprocessing, data validation and multiple models in BentoML
  • 6. Different tools for developing ML services
  • 7. Exercise Using BentoML to develop a ML service
  • 8. Exercise Solution Using BentoML to develop a ML service

  • 19. Deploy to Azure Cloud with Azure Container and Azure SDKs
  • 1. Introduction to Machine Learning in Cloud
  • 2. Putting the ML application into production in Azure Container with Docker
  • 3. SDKs and Azure Blob Storage for model deployment to Azure
  • 4. Model training and production deployment in Azure Blob Storage
  • 5. Download the Azure Blob Storage model and get predictions

  • 20. Deployment of ML services on Heroku
  • 1. Heroku Fundamentals

  • 21. Continuous integration and delivery (CICD) with GitHub Actions and CML
  • 1. Introduction to GitHub Actions
  • 2. GitHub Actions basic workflow
  • 3. GitHub Actions hands-on lab
  • 4. CI with Continuous Machine Learning (CML)
  • 5. CML Use Cases
  • 6. Hands-On Lab Applying GitHub Actions and CML to MLOps
  • 7. Hands-On Lab Tracking Performance with GitHub Actions and CML

  • 22. Model and service monitoring with Evidently AI
  • 1. Introduction to monitoring ML models and services
  • 2. Data Drift, Concept Drift, and Model Performance
  • 3. ML model and service monitoring tools
  • 4. Evidently AI Fundamentals
  • 5. Drift and data quality, target drift and model quality
  • 6. Hands-on Lab Monitoring a model with Evidently AI
  • 7. Hands-on Laboratory Monitoring the model in production
  • 8. Hands-on Laboratory Identification of data drift in production

  • 23. End-to-end MLOps Project
  • 1. MLOps end-to-end projectMLOps end-to-end project
  • 2. Development of the ML model
  • 3. Validation of the quality of the code, model and preprocessing
  • 4. Project versioning with MLFlow and DVC
  • 5. Shared repository with DagsHub and MLFlow
  • 6. API development with BentoML
  • 7. App development with Streamlit
  • 8. CI-CD Data validation workflow with GitHub Actions
  • 9. CICD Validating app functionality with GitHub Actions
  • 10. CICD Automated app deployment with GitHub Actions and Heroku
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 14838
    حجم: 4280 مگابایت
    مدت زمان: 604 دقیقه
    تاریخ انتشار: 29 خرداد 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید