وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning with Scikit-Learn

سرفصل های دوره

The ability to apply machine learning algorithms is an important part of a data scientist’s skill set. scikit-learn is a popular open-source Python library that offers user-friendly and efficient versions of common machine learning algorithms. In this course, data scientist Michael Galarnyk explains how to use scikit-learn for supervised and unsupervised machine learning. Michael reviews the benefits of this easy-to-use API and then quickly segues to practical techniques, starting with linear and logistic regression, decision trees, and random forest models. In chapter three, he covers unsupervised learning techniques such as K-means clustering and principal component analysis (PCA). Plus, learn how to create scikit-learn pipelines to make your code cleaner and more resilient to bugs. By the end of the course, you'll be able to understand the strengths and weaknesses of each scikit-learn algorithm and build better, more efficient machine learning models.

This course was created by Madecraft. We are pleased to host this content in our library.
 


01 - Introduction
  • 01 - Effective machine learning with scikit-learn
  • 02 - What you should know before you start
  • 03 - Using the exercise files

  • 02 - 1. Input and Loading Data
  • 01 - What is machine learning
  • 02 - Why use scikit-learn for machine learning

  • 03 - 2. Supervised Learning
  • 01 - What is supervised learning
  • 02 - How to format data for scikit-learn
  • 03 - Linear regression using scikit-learn
  • 04 - Train test split
  • 05 - Logistic regression using scikit-learn
  • 06 - Logistic regression for multiclass classification
  • 07 - Decision trees using scikit-learn
  • 08 - How to visualize decision trees using Matplotlib
  • 09 - Bagged trees using scikit-learn
  • 10 - Random forests using scikit-learn
  • 11 - Which machine learning model should you use

  • 04 - 3. Unsupervised Learning
  • 01 - What is unsupervised learning
  • 02 - K-means clustering
  • 03 - Principal component analysis (PCA) for data visualization
  • 04 - PCA to speed up machine learning algorithms
  • 05 - scikit-learn pipelines

  • 05 - Conclusion
  • 01 - Get started with scikit-learn
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 10948
    حجم: 137 مگابایت
    مدت زمان: 44 دقیقه
    تاریخ انتشار: ۱۰ اردیبهشت ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید