وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning Essentials (2023)

سرفصل های دوره

Kickstart Machine Learning, understand maths behind essential algorithms, implement them in python & build 8+ projects!


1. Introduction
  • 1. Course Overview
  • 2. Artificial Intelligence
  • 3. Machine Learning
  • 4. Deep Learning
  • 5. Computer Vision
  • 6. Natural Language Processing
  • 7. Automatic Speech Recognition
  • 8. Reinforcement Learning
  • 9. Pre-requisites.html
  • 10. Code Repository.html

  • 2. Supervised vs Unsupervised Learning
  • 1. Supervised Learning Introduction
  • 2. Supervised Learning Example
  • 3. Unsupervised Learning

  • 3. Linear Regression
  • 1. Introduction to Linear Regression
  • 2. Notation
  • 3. Hypothesis
  • 4. Loss Error Function
  • 5. Training Idea
  • 6. Gradient Descent Optimisation
  • 7. Gradient Descent Code
  • 8. Gradient Descent - for Linear Regression
  • 9. The Math of Training
  • 10. Code 01 - Data Generation
  • 11. Code 02 - Data Normalisation
  • 12. Code 03 - Train Test Split
  • 13. Code 04 - Modelling
  • 14. Code 05 - Predictions
  • 15. R2 Score
  • 16. Code 06 - Evaluation
  • 17. Code 07 - Visualisation
  • 18. Code 08 - Trajectory [Optional]

  • 4. Linear Regression - Multiple Features
  • 1. Introduction
  • 2. Hypothesis
  • 3. Loss Function
  • 4. Training & Gradient Updates
  • 5. Code 01 - Data Prep
  • 6. Code 02 - Hypothesis
  • 7. Code 03 - Loss Function
  • 8. Code 04 - Gradient Computation
  • 9. Code 05 - Training Loop
  • 10. A Note about Shapes
  • 11. Code 06 - Evaluation
  • 12. Linear Regression using Sk-Learn

  • 5. Logistic Regression
  • 1. Binary Classification Introduction
  • 2. Notation
  • 3. Hypothesis Function
  • 4. Binary Cross-Entropy Loss Function
  • 5. Gradient Update Rule
  • 6. Code 01 - Data Prep
  • 7. Code 02 - Hypothesis Logit Model
  • 8. Code 03 - Binary Cross Entropy Loss
  • 9. Code 04 - Gradient Computation
  • 10. Code 05 - Training Loop
  • 11. Code 06 - Visualise Decision Boundary
  • 12. Code 07 - Predictions & Accuracy
  • 13. Logistic Regression using Sk-Learn
  • 14. Multiclass Classification One Vs Rest
  • 15. Multiclass Classification One Vs One

  • 6. Dimensionality Reduction Feature Selection
  • 1. Curse of Dimensionality
  • 2. Feature Selection Vs. Feature Extraction
  • 3. Filter Method
  • 4. Wrapper Method
  • 5. Embedded Method
  • 6.1 train.csv
  • 6. Feature Selection - Code

  • 7. Principal Component Analysis (PCA)
  • 1. Introduction to PCA
  • 2. Conceptual Overview of PCA
  • 3. Maximising Variance
  • 4. Minimising Distances
  • 5. Eigen Values & Eigen Vectors
  • 6. PCA Summary
  • 7. Understanding Eigen Values
  • 8. PCA Code
  • 9. Choosing the right dimensions

  • 8. K-Nearest Neigbours
  • 1. Introduction
  • 2. KNN Idea
  • 3. KNN Data Prep
  • 4. KNN Algorithm Code
  • 5. Euclidean and Manhattan Distance
  • 6. Deciding value of K
  • 7. KNN and Data Standardisation
  • 8. KNN Pros and Cons
  • 9. KNN using Sk-Learn.html

  • 9. PROJECT - Face Recognition
  • 1. OpenCV - Working with Images
  • 2. OpenCV - Video Input from WebCam
  • 3. Object Detection using Haarcascades
  • 4. Face Detection in Images
  • 5. Face Detection in Live Video
  • 6. Face Recognition Project Intro
  • 7. Face Recognition 01 - Data Collection
  • 8. Face Recognition 02 - Loading Data
  • 9. Face Recognition 03 - Predictions using KNN

  • 10. K-Means
  • 1. K-Means Algorithm
  • 2. Code 01 - Data Prep
  • 3. Code 02 - Init Centers
  • 4. Code 03 - Assigning Points
  • 5. Code 04 - Updating Centroids
  • 6. Code 05 - Visualizing K-Means & Results

  • 11. Project - Dominant Color Extraction
  • 1. Introduction
  • 2. Reading Images
  • 3. Finding Clusters
  • 4. Dominant Color Swatches
  • 5. Image in K-Colors

  • 12. Naive Bayes Algorithm
  • 1. Bayes Theorem
  • 2. Derivation of Bayes Theorem
  • 3. Bayes Theorem Question
  • 4. Naive Bayes Algorithm
  • 5. Naive Bayes for Text Classification
  • 6. Computing Likelihood
  • 7.1 golf.csv
  • 7. Understanding Golf Dataset
  • 8. CODE - Prior Probability
  • 9. CODE - Conditional Probability
  • 10. CODE - Likelihood
  • 11. CODE - Prediction
  • 12. Implementing Naive Bayes - Sklearn

  • 13. Multinomial Naive Bayes
  • 1. Multinomial Naive Bayes
  • 2. Laplace Smoothing
  • 3. Multinomial Naive Bayes Example
  • 4. Bernoulli Naive Bayes
  • 5. Bernoulli Naive Bayes Example
  • 6. Bias Variance Tradeoff
  • 7. Gaussian Naive Bayes
  • 8. CODE - Variants of Naive Bayes

  • 14. PROJECT Spam Classifier
  • 1. Project Overview
  • 2. Data Clearning
  • 3. WordCloud
  • 4. Text Featurization
  • 5. Model Building
  • 6. Model Evaluation

  • 15. Decision Trees
  • 1. Decision Trees Introduction
  • 2. Decision Trees Example
  • 3. Entropy
  • 4. CODE Entropy
  • 5. Information Gain
  • 6. CODE Split Data
  • 7. CODE Information Gain
  • 8. Construction of Decision Trees
  • 9. Stopping Conditions

  • 16. Decision Trees Implementation
  • 1. CODE - Decision Tree Node
  • 2. CODE - Train Decision Tree
  • 3. CODE - Assign Target Variable to Each Node
  • 4. CODE - Stopping Conditions
  • 5. CODE - Train Child Nodes
  • 6. CODE - Explore Decision Tree Model
  • 7. CODE - Prediction
  • 8. Handling Numeric Features
  • 9. Bias Variance Tradeoff
  • 10. Decision Trees for Regression
  • 11. Decision Tree Code - Sklearn

  • 17. PROJECT Titanic Survival Prediction
  • 1.1 titanic train.csv
  • 1. Project Overview
  • 2. Exploratory Data Analysis
  • 3. Exploratory Data Analysis - II
  • 4. Data Preparation for ML Model
  • 5. Handling Missing Values
  • 6. Decision Tree Model Building
  • 7. Visualize Decision Tree

  • 18. Ensemble Learning Bagging
  • 1. Ensemble Learning
  • 2. Bagging Model
  • 3. Why Bagging Helps
  • 4. Random Forest Algorithm
  • 5. Bias Variance Tradeoff
  • 6. CODE Random Forest

  • 19. Ensemble Learning Boosting
  • 1. Boosting Introduction
  • 2. Boosting Intuition
  • 3. Boosting Mathematical Formulation
  • 4. Concept of Pseudo Residuals
  • 5. GBDT Algorithm
  • 6. Bias Variance Tradeoff
  • 7. CODE - Gradient Boosting Decision Trees
  • 8. XGBoost
  • 9. Adaptive Boosting (AdaBoost)

  • 20. PROJECT Customer Churn Prediction
  • 1. Project Overview
  • 2. Exploratory Data Analysis
  • 3. Data Visualisation
  • 4. Finding relations
  • 5. Data Preparation
  • 6. Model Building
  • 7. Hyperparameter tuning

  • 21. Deep Learning Introduction - Neural Network
  • 1. Biological Neural Network
  • 2. A Neuron
  • 3. How does a perceptron Learns
  • 4. Gradient Descent Updates
  • 5. Neural Networks
  • 6. 3 Layer NN
  • 7. Why Neural Nets
  • 8. Tensorflow Playground
  • 9. CODE -Data Preparation
  • 10. CODE - Model Building
  • 11. CODE - Model Training and Testing

  • 22. PROJECT Pokemon Image Classification
  • 1.1 Dataset Link.html
  • 1. Introduction
  • 2. The Data
  • 3. Structured Data
  • 4. Data Loading
  • 5. Data Preprocessing
  • 6. Model Architecture
  • 7. Softmax Function
  • 8. Model Training
  • 9. Model evaluation
  • 10. Predictions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 9601
    حجم: 16233 مگابایت
    مدت زمان: 1678 دقیقه
    تاریخ انتشار: ۲۲ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید