وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Learn Web Application Development with Machine Learning

سرفصل های دوره

Learn basic to advanced Machine Learning algorithms by creating web applications using Flask!!


1. Introduction
  • 1. Introduction

  • 2. Setup and Creating Environment
  • 1. Install anaconda on your machine
  • 2. Set up environment and Download Machine Learning Libraries

  • 3. Introduction to Machine Learning for Absolute Beginners
  • 1. Types of Data in Machine Learning
  • 2. Introduction to numpy
  • 3. Introduction to pandas
  • 4. Train and Test split of data
  • 5. Miscellaneous Concept of Machine Learning

  • 4. Linear Regression in detail
  • 1.1 all-about-regression.zip
  • 1. Lecture Intro to Linear Regression
  • 2. Lecture Learn about OLS [Ordinary Least Squares] algorithm
  • 3. Lecture Introduction to working of Linear Regression
  • 4. Lecture Introduction to MSE, MAE, RMSE
  • 5. Lecture Introduction to R squared
  • 6. Tutorial Implement Simple linear regression numerical [calculate best fit line]
  • 7.1 all-about-regression.zip
  • 7. Workshop Implement Simple Linear Regression
  • 8. Lecture Difference between Simple and Multiple Regression
  • 9.1 all-about-regression.zip
  • 9. Workshop Implement Multiple Linear Regression
  • 10. Workshop Implement Multiple Linear Regression

  • 5. Logistic Regression [optional]
  • 1. Lecture Learn about Logistic Regression
  • 2. Lecture Learn about hypothetical function [sigmoidlogit function]
  • 3. Lecture Logistic Math Overview
  • 4. Lecture Learn about decision boundary
  • 5. Lecture Learn about Cost function of Logistic Regression
  • 6. Lecture Learn about Gradient Descent
  • 7.1 logistic.zip
  • 7. Workshop Implement Logistic Regression
  • 8.1 logistic.zip
  • 8. Workshop final Implement Logistic Regression

  • 6. Neural Network in detail
  • 1. Introduction to Neural Networks
  • 2. Example of neural network
  • 3. Updating the weights [partial differentiation]
  • 4. Introduction to partial differentiation
  • 5. Introduction to the Activation Function
  • 6. Why do we need bias in the program
  • 7. Why we use regularization in the Neural Network
  • 8. Introduction to the gradient descent [review]
  • 9. Introduction to Stochastic Gradient Descent and Adam Optimizer
  • 10. Introduction to mini-batch SGD

  • 7. Coding Neural Network from Scratch [optional]
  • 1.1 Artificial-NN-from-scratch.zip
  • 1. Setting up environment and coding single neuron
  • 2.1 Artificial-NN-from-scratch.zip
  • 2. Coding neuron layer
  • 3. Using dot product to code neuron layer
  • 4. Coding dense layer [must know Object Oriented Programming]
  • 5.1 Activation-function.zip
  • 5. Introduction to Activation Function

  • 8. Activation Functions
  • 1.1 Activation-function.zip
  • 1. Implementation of activation function [step and sigmoid]
  • 2.1 Activation-function.zip
  • 2. Implementation of activation function [tanh and ReLu]

  • 9. Introduction to Tensorflow and Keras
  • 1. Introduction to Deep Learning
  • 2. Tensor Ranks in Tensorflow
  • 3. Program Elements in Tensorflow
  • 4. Coding in Tensorflow
  • 5. Introduction to Keras
  • 6. Keras Model [Most Important Video]
  • 7. Implementing neural network with Keras

  • 10. Creating Simple Flask Application (Hello World)
  • 1.1 app.zip
  • 1. Flask Display Hello World

  • 11. Web App Implementing Regression using Keras
  • 1.1 app.zip
  • 1. Introduction to the dataset
  • 2.1 app.zip
  • 2. Project structure
  • 3.1 app.zip
  • 3. Load the data
  • 4. Handle Missing values
  • 5. Dependent and Independent variable
  • 6. Train Test split of data
  • 7. Building the model
  • 8. Make predictions
  • 9. Save the model
  • 10. Load model and make predictions
  • 11. Finding range min and max value of each attributes
  • 12. Making range as dictionary
  • 13. Creating an Flask App to test API endpoint
  • 14. Testing the model
  • 15. Restrictions for Input to the model
  • 16. Using POSTMAN to test API endpoint

  • 12. Basics of Convolution Neural Network
  • 1. Introduction to Convolution Neural Network
  • 2. Kernel or filter
  • 3. Example of Kernel
  • 4. Stride
  • 5. Padding
  • 6. Pooling
  • 7. Flatten
  • 8. Layers of CNN

  • 13. Introduction to Transfer Learning
  • 1. What is Transfer Learning
  • 2. Traditional ML vs Transfer Learning
  • 3. How to use Transfer Learning
  • 4. MobileNet
  • 5. Architecture of MobileNet

  • 14. Web App Implementing CNN (Mobile Net)
  • 1.1 app.zip
  • 1. Introducing Project
  • 2. Creating function to check allowed files
  • 3. Creating basic route
  • 4. Loading all libraries for the model
  • 5. Instantiating the model
  • 6. The upload_image function
  • 7. Checking if image is uploaded
  • 8. Checking whether or not image is selected
  • 9. Load the image
  • 10. Transform the image and store in numpy array
  • 11. Make Predictions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 331
    حجم: 7252 مگابایت
    مدت زمان: 1082 دقیقه
    تاریخ انتشار: 22 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید