وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Graph Algorithms for Data Science, Video Edition

سرفصل های دوره
  • 001. Part 1. Introduction to graphs
  • 002. Chapter 1. Graphs and network science An introduction
  • 003. Chapter 1. How to spot a graph-shaped problem
  • 004. Chapter 1. Summary
  • 005. Chapter 2. Representing network structure Designing your first graph model
  • 006. Chapter 2. Network representations
  • 007. Chapter 2. Designing your first labeled-property graph model
  • 008. Chapter 2. Extracting knowledge from text
  • 009. Chapter 2. Summary
  • 010. Part 2. Network analysis
  • 011. Chapter 3. Your first steps with Cypher query language
  • 012. Chapter 3. Importing CSV files with Cypher
  • 013. Chapter 3. Solutions to exercises
  • 014. Chapter 3. Summary
  • 015. Chapter 4. Exploratory graph analysis
  • 016. Chapter 4. Aggregating data with Cypher query language
  • 017. Chapter 4. Filtering graph patterns
  • 018. Chapter 4. Counting subqueries
  • 019. Chapter 4. Multiple aggregations in sequence
  • 020. Chapter 4. Solutions to exercises
  • 021. Chapter 4. Summary
  • 022. Chapter 5. Introduction to social network analysis
  • 023. Chapter 5. Introduction to the Neo4j Graph Data Science library
  • 024. Chapter 5. Network characterization
  • 025. Chapter 5. Identifying central nodes
  • 026. Chapter 5. Solutions to exercises
  • 027. Chapter 5. Summary
  • 028. Chapter 6. Projecting monopartite networks
  • 029. Chapter 6. Retweet network characterization
  • 030. Chapter 6. Identifying the most influential content creators
  • 031. Chapter 6. Solutions to exercises
  • 032. Chapter 6. Summary
  • 033. Chapter 7. Inferring co-occurrence networks based on bipartite networks
  • 034. Chapter 7. Constructing the co-occurrence network
  • 035. Chapter 7. Characterization of the co-occurrence network
  • 036. Chapter 7. Community detection with the label propagation algorithm
  • 037. Chapter 7. Identifying community representaties with PageRank
  • 038. Chapter 7. Solutions to exercises
  • 039. Chapter 7. Summary
  • 040. Chapter 8. Constructing a nearest neighbor similarity network
  • 041. Chapter 8. Constructing the nearest neighbor graph
  • 042. Chapter 8. User segmentation with the community detection algorithm
  • 043. Chapter 8. Solutions to exercises
  • 044. Chapter 8. Summary
  • 045. Part 3. Graph machine learning
  • 046. Chapter 9. Node embeddings and classification
  • 047. Chapter 9. Node classification task
  • 048. Chapter 9. The node2ec algorithm
  • 049. Chapter 9. Solutions to exercises
  • 050. Chapter 9. Summary
  • 051. Chapter 10. Link prediction
  • 052. Chapter 10. Dataset split
  • 053. Chapter 10. Network feature engineering
  • 054. Chapter 10. Link prediction classification model
  • 055. Chapter 10. Solutions to exercises
  • 056. Chapter 10. Summary
  • 057. Chapter 11. Knowledge graph completion
  • 058. Chapter 11. Knowledge graph completion
  • 059. Chapter 11. Solutions to exercises
  • 060. Chapter 11. Summary
  • 061. Chapter 12. Constructing a graph using natural language processing techniques
  • 062. Chapter 12. Named entity recognition
  • 063. Chapter 12. Relation extraction
  • 064. Chapter 12. Implementation of information extraction pipeline
  • 065. Chapter 12. Solutions to exercises
  • 066. Chapter 12. Summary
  • 067. Appendix. The Neo4j enironment
  • 068. Appendix. Neo4j installation
  • 069. Appendix. Neo4j Browser configuration
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38818
    حجم: 10874 مگابایت
    مدت زمان: 585 دقیقه
    تاریخ انتشار: ۲۰ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید