وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Graph Algorithms for Data Science, Video Edition

سرفصل های دوره
  • 001. Part 1. Introduction to graphs
  • 002. Chapter 1. Graphs and network science An introduction
  • 003. Chapter 1. How to spot a graph-shaped problem
  • 004. Chapter 1. Summary
  • 005. Chapter 2. Representing network structure Designing your first graph model
  • 006. Chapter 2. Network representations
  • 007. Chapter 2. Designing your first labeled-property graph model
  • 008. Chapter 2. Extracting knowledge from text
  • 009. Chapter 2. Summary
  • 010. Part 2. Network analysis
  • 011. Chapter 3. Your first steps with Cypher query language
  • 012. Chapter 3. Importing CSV files with Cypher
  • 013. Chapter 3. Solutions to exercises
  • 014. Chapter 3. Summary
  • 015. Chapter 4. Exploratory graph analysis
  • 016. Chapter 4. Aggregating data with Cypher query language
  • 017. Chapter 4. Filtering graph patterns
  • 018. Chapter 4. Counting subqueries
  • 019. Chapter 4. Multiple aggregations in sequence
  • 020. Chapter 4. Solutions to exercises
  • 021. Chapter 4. Summary
  • 022. Chapter 5. Introduction to social network analysis
  • 023. Chapter 5. Introduction to the Neo4j Graph Data Science library
  • 024. Chapter 5. Network characterization
  • 025. Chapter 5. Identifying central nodes
  • 026. Chapter 5. Solutions to exercises
  • 027. Chapter 5. Summary
  • 028. Chapter 6. Projecting monopartite networks
  • 029. Chapter 6. Retweet network characterization
  • 030. Chapter 6. Identifying the most influential content creators
  • 031. Chapter 6. Solutions to exercises
  • 032. Chapter 6. Summary
  • 033. Chapter 7. Inferring co-occurrence networks based on bipartite networks
  • 034. Chapter 7. Constructing the co-occurrence network
  • 035. Chapter 7. Characterization of the co-occurrence network
  • 036. Chapter 7. Community detection with the label propagation algorithm
  • 037. Chapter 7. Identifying community representaties with PageRank
  • 038. Chapter 7. Solutions to exercises
  • 039. Chapter 7. Summary
  • 040. Chapter 8. Constructing a nearest neighbor similarity network
  • 041. Chapter 8. Constructing the nearest neighbor graph
  • 042. Chapter 8. User segmentation with the community detection algorithm
  • 043. Chapter 8. Solutions to exercises
  • 044. Chapter 8. Summary
  • 045. Part 3. Graph machine learning
  • 046. Chapter 9. Node embeddings and classification
  • 047. Chapter 9. Node classification task
  • 048. Chapter 9. The node2ec algorithm
  • 049. Chapter 9. Solutions to exercises
  • 050. Chapter 9. Summary
  • 051. Chapter 10. Link prediction
  • 052. Chapter 10. Dataset split
  • 053. Chapter 10. Network feature engineering
  • 054. Chapter 10. Link prediction classification model
  • 055. Chapter 10. Solutions to exercises
  • 056. Chapter 10. Summary
  • 057. Chapter 11. Knowledge graph completion
  • 058. Chapter 11. Knowledge graph completion
  • 059. Chapter 11. Solutions to exercises
  • 060. Chapter 11. Summary
  • 061. Chapter 12. Constructing a graph using natural language processing techniques
  • 062. Chapter 12. Named entity recognition
  • 063. Chapter 12. Relation extraction
  • 064. Chapter 12. Implementation of information extraction pipeline
  • 065. Chapter 12. Solutions to exercises
  • 066. Chapter 12. Summary
  • 067. Appendix. The Neo4j enironment
  • 068. Appendix. Neo4j installation
  • 069. Appendix. Neo4j Browser configuration
  • 179,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38818
    حجم: 10874 مگابایت
    مدت زمان: 585 دقیقه
    تاریخ انتشار: ۲۰ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    179,000 تومان
    افزودن به سبد خرید