وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Full Stack Data Science & Machine Learning BootCamp Course

سرفصل های دوره

Learn Python, Excel,Deep Learning, Power BI, SQL, Artificial Intelligence,Business Statistics, Capstone Projects & more!


1. Introduction to the Full Stack Data Science Course
  • 1. Introduction to the Full Stack Data Science Course

  • 2. PYTHON - Introduction to Basics of Python for Beginners
  • 1.1 agent_classification.csv
  • 1.2 data structure - list,list project and tuple.zip
  • 1.3 data structure - sets.zip
  • 1.4 data structure- dictionary.zip
  • 1.5 datetime features.zip
  • 1.6 No2 dataset.csv
  • 1.7 string manipulation.zip
  • 1. Python - Data Structures (Lists, Tuple, Dictionary) and String Manipulations
  • 2.1 implementing functions in python.zip
  • 2.2 implementing recursion in python.zip
  • 2.3 kpi for classification.zip
  • 2.4 lambda expressions.zip
  • 2. Python - Implementation Of Lambda, Recursion, Functions.
  • 3.1 advertisement predictions using logistic regression.zip
  • 3.2 advertising.csv
  • 3.3 eda - part1.zip
  • 3.4 eda - part2.zip
  • 3.5 eda- descriptive analysis.zip
  • 3.6 standard libraries in python.zip
  • 3. Python - Understand Of Libraries,Exploratory Data Analysis,Descriptive Analysis

  • 3. Business Statistics for Data Analysis
  • 1.1 tutorial_stats_pel.zip
  • 1. Introduction to statistics and Measures of central tendencies
  • 2.1 data_cleaning_insights.zip
  • 2.2 data.csv
  • 2. Central Limit Theorem - CLT
  • 3. Distributions and Correlations
  • 4. PDF & CDF and Hypothesis Testing
  • 5.1 basics_of_time_series_forecasting.zip
  • 5.2 Time_Series_AirPassengers.csv
  • 5. Time Series Analysis & Forecasting
  • 6.1 tutorial_probability.zip
  • 6.2 tutorial_statistics.zip
  • 6. Probability Theory and Statistical Analysis
  • 7.1 project_5_uk_road_accident_timeseries_forecasting.zip
  • 7. Capstone Project - UK Road Accident Analysis Part - 1
  • 8.1 uk_road_accident_analytics.zip
  • 8. Capstone Project - UK Road Accident Part -2

  • 4. MACHINE LEARNING
  • 1.1 churn prediction logistic regression.zip
  • 1.2 churn_prediction.csv
  • 1.3 data_cleaned.csv
  • 1.4 logistic regression notebook.zip
  • 1. MACHINE LEARNING - Classical Machine Learning Algorithm Logistic Regression
  • 2.1 bag of words.zip
  • 2.2 covid_19_india.csv
  • 2.3 IndividualDetails.csv
  • 2.4 ISPA.xlsx
  • 2.5 novel corona virus data analysis - india.zip
  • 2.6 tf-idf.zip
  • 2.7 word2vec.zip
  • 2. MACHINE LEARNING - Word Embedding Techniques BoW, TF -IDF, W2V etc
  • 3. MACHINE LEARNING - Text Cleaning and Preprocessing with Amazon Reviews Data
  • 4. MACHINE LEARNING - Classical Machine Learning Algorithm Linear Regression
  • 5. MACHINE LEARNING - Decision Tree Classifier and Regression with Example
  • 6. MACHINE LEARNING - Geometric Intuition of Ensembles Models and Flask Project
  • 7. MACHINE LEARNING - Data Analysis on Loan Approval Status
  • 8. MACHINE LEARNING - Unsupervised Learning Algorithms K means Cluster Techniques

  • 5. ML Capstone Project 1 Flight_Fare_Prediction
  • 1.1 app.zip
  • 1.2 Data_Train.xlsx
  • 1.3 flight_rf.zip
  • 1.4 home.html
  • 1.5 project_1_flight_fare_price_prediction.zip
  • 1.6 styles.zip
  • 1.7 Test_set.xlsx
  • 1. Project_1 - Flight_Fare_Prediction
  • 2. Feature Engineering and Applying Classical ML Models
  • 3. Deploy the Model with Flask Framework

  • 6. ML Capstone Project 2 Mushroom_Classification
  • 1.1 mushrooms.csv
  • 1.2 project_2_mushroom_classification.zip
  • 1. Project_2_Mushroom_Classification - Exploratory Data Analysis
  • 2. Building The Benchmark Model and Evaluation

  • 7. ML Capstone Project 3 NurserySchool_Application_Classification
  • 1.1 nursery_data.csv
  • 1.2 project_3_nursery_school_system.zip
  • 1. Project_3_NurserySchool_Application_Classification
  • 2. Logistic Regression, SVM, Decision Tree Models & Evaluation Metrics

  • 8. ML Capstone Project 4 Toxic_Comments_Classification
  • 1.1 project_4_toxic_comments_classification_eda.zip
  • 1.2 project_4_toxic_comments_classification.zip
  • 1. Project_4_Toxic_Comments_Classification
  • 2. NLP - Tokenized Sequences for Visualization
  • 3. Model Refinement - Optimize NB,SVM,LR with Feature Weight

  • 9. ML Capstone Project 5 UK_Road_Accident_Timeseries_Forecasting
  • 1.1 project_5_uk_road_accident_timeseries_forecasting.zip
  • 1. Project_5_UK_Road_Accident_Timeseries_Forecasting_EDA
  • 2. Forecast UK Accident rates based on Number of Casualties on SARIMA,FbP,LSTMs

  • 10. Structured Query Language (SQL)
  • 1. Introduction to SQL - SQL Syntax and Download MySQL
  • 2. RDBMS - Data Integrity, Database Normalization
  • 3. Data Definition Language (DDL)
  • 4. Data Manipulation language (DML)
  • 5. Data Control Languages (DCL) and Domain Constraints
  • 6. Filtering Data and SET Operators in SQL
  • 7. Conditional Expressions in SQL
  • 8. Grouping Data
  • 9. Joining Multiple Tables (JOINS)
  • 10. SQL RANK Functions
  • 11. SQL Triggers and Stored Procedures
  • 12. SQL Capstone Project 1 Data Analytics on Movie Reviews in SQL

  • 11. DEEP LEARNING
  • 1.1 mlp.zip
  • 1. DEEP LEARNING - Introduction to Neural Networks and Basics of MLP, BACKPROP
  • 2.1 lstm_implementation_from_scratch.zip
  • 2.2 rnn_classification.zip
  • 2. DEEP LEARNING - In Depth Understanding of RNN and LSTM with Examples
  • 3.1 cnn.zip
  • 3. DEEP LEARNING - Intuition Behind the Computer Vision and CNN Algorithm
  • 4.1 cnn_on_cifr project.zip
  • 4. DEEP LEARNING - Convolutional Neural Networks with Pizza and CIFAR Projects
  • 5. DEEP LEARNING - Practical Examples on Transfer Learning for Vgg16 Model
  • 6.1 app.zip
  • 6.2 base.html
  • 6.3 index.html
  • 6.4 main.zip
  • 6.5 requirements.zip
  • 6.6 util.zip
  • 6. DEEP LEARNING - Web Based Flask Framework for Wild Animal Recognition with CNN

  • 12. Microsoft Excel
  • 1.1 Data-Formatting-Tools.xlsx
  • 1.2 Lesson-4-Working-with-Cells-and-Ranges.xlsx
  • 1. Introduction to Excel Workbook
  • 2.1 Lesson-6-Excel-Tables.xlsx
  • 2.2 Lesson-7-AutoFill-Custom-Fill-and-Flash-Fill.xlsx
  • 2. Hands on Excel Cells and Ranges
  • 3.1 Lesson-9-Excel-Formula-basics.xlsx
  • 3.2 Logical-Formulas.xlsx
  • 3. Basic Formulae - Logical Operators
  • 4.1 Lesson-11-Math-Formulas.xlsx
  • 4.2 Lookup-and-Reference-Formulas.xlsx
  • 4. Excel - Lookup and Reference Formulae
  • 5.1 Stat-Formulas.xlsx
  • 5.2 Text-Formulas.xlsx
  • 5. Excel - Logical Formulae
  • 6.1 Lesson-15-Date-and-Time-Formulas.xlsx
  • 6.2 Lesson-16-Formula-Mix-and-Match.xlsx
  • 6. Text and Statistical Formulae
  • 7.1 Data-Sorting-and-Filtering.xlsx
  • 7.2 Lesson-19-Data-Sorting-and-Filtering.xlsx
  • 7. Excel - Date & Time Formulae
  • 8.1 Lesson-23-Dynamic-Charting-Example.xlsx
  • 8. Excel - Sorting & Filtering
  • 9.1 Lesson-24-Pivot-Table.xlsx
  • 9. Dynamic Charts With Examples
  • 10. Derive Insights with Pivot Tables

  • 13. Microsoft Power BI (Business Intelligence Tool)
  • 1.1 basic charts.zip
  • 1.2 Sample - Superstore.xlsx
  • 1. Installation Power BI Desktop and Applications of Power BI
  • 2.1 3.4 State and UTs of India.xlsx
  • 2.2 maps.zip
  • 2.3 Sample - Superstore.xlsx
  • 2. Understand the Concepts of Maps using Power BI
  • 3.1 cards and filters.zip
  • 3.2 Sample - Superstore.xlsx
  • 3.3 section 5 - other charts.zip
  • 3.4 table and matrix.zip
  • 3. Power BI - Tables and Matrix
  • 4.1 reference.zip
  • 4.2 Sample - Superstore.xlsx
  • 4.3 sample dashboard.zip
  • 4.4 slicers.zip
  • 4. Different Types of Power BI Slicers
  • 5.1 reference.zip
  • 5.2 Sample - Superstore.xlsx
  • 5.3 slicers.zip
  • 5. Introduction to Power Query
  • 6.1 publishing reports to power bi service.zip
  • 6. Hands on with Power Query Operations
  • 7.1 12. Power Query - Date Functions.xlsx
  • 7.2 section 12 - pq date functions.zip
  • 7. Manipulations with Power Query Operations
  • 8.1 13. Power Query - Number Functions.xlsx
  • 8.2 publishing reports to power bi service.zip
  • 8. Build a Super Store Sales Dashboard
  • 9.1 13. Power Query - Number Functions.xlsx
  • 9.2 14.5 append different data sources in power bi.zip
  • 9.3 sales and production analysis new.zip
  • 9. BI Capstone Project - Sales and Production Analysis
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 5917
    حجم: 19473 مگابایت
    مدت زمان: 2068 دقیقه
    تاریخ انتشار: ۳ اسفند ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید