وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Faster Python Code

سرفصل های دوره

By optimizing your Python code, you can ensure that your code uses fewer resources and runs faster than it did previously. In this advanced course, explore tips and techniques that can help you optimize your code to make it more efficient. Instructor Miki Tebeka covers general tools of the trade, including how to leverage the tools Python provides for measuring time, and how to use line_profiler to get line-by-line profiling information. Miki also shares how to pick the right data structures, how approximation algorithms can speed up your code, and how to use NumPy for fast numeric computation. He wraps up the course with a discussion of how to integrate performance in your process.

This course is integrated with GitHub Codespaces, an instant cloud developer environment that offers all the functionality of your favorite IDE without the need for any local machine setup. With GitHub Codespaces, you can get hands-on practice from any machine, at any time—all while using a tool that you’ll likely encounter in the workplace. Check out the “Using GitHub Codespaces with this course” video to learn how to get started.


01 - Introduction
  • 01 - Welcome
  • 02 - What you should know
  • 03 - Use Codespaces with this course

  • 02 - 1. Tools of the Trade
  • 01 - Always profile first
  • 02 - General tips
  • 03 - Measuring time
  • 04 - CPU profiling
  • 05 - line profiler
  • 06 - Tracing memory allocations
  • 07 - memory profiler

  • 03 - 2. Picking the Right Data Structure
  • 01 - Big-O notation
  • 02 - bisect
  • 03 - deque
  • 04 - heapq
  • 05 - Beyond the standard library

  • 04 - 3. Tricks of the Trade
  • 01 - Local caching of names
  • 02 - Remove function calls
  • 03 - Using slots
  • 04 - Built-ins
  • 05 - Allocate

  • 05 - 4. Caching
  • 01 - Overview
  • 02 - Pre-calculating
  • 03 - lru cache
  • 04 - Joblib

  • 06 - 5. Cheating
  • 01 - When approximation is good enough
  • 02 - Cheating example

  • 07 - 6. Parallel Computing
  • 01 - Amdahls Law
  • 02 - Threads
  • 03 - Processes
  • 04 - asyncio

  • 08 - 7. Beyond Python
  • 01 - NumPy
  • 02 - Numba
  • 03 - Cython
  • 04 - PyPy
  • 05 - C extensions

  • 09 - 8. Adding Optimization to Your Process
  • 01 - Why do we need a process
  • 02 - Design and code reviews
  • 03 - Benchmarks
  • 04 - Monitoring and alerting

  • 10 - Conclusion
  • 01 - Next steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 38205
    حجم: 235 مگابایت
    مدت زمان: 126 دقیقه
    تاریخ انتشار: ۱۰ مرداد ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید