در حال حاضر محصولی در سبد خرید شما وجود ندارد.
In a field where reproducible results are essential, Docker is rapidly emerging as one of the top tools for bringing efficiency to the work that data science teams—particularly those working in machine learning (ML)—are doing. Creating and developing ML models is often messy. Seasoned data scientists know that different versions of the same software can produce different results. With Docker, you can include the right versions of each needed dependency and library, so no one ever has to do any configuration. After the Dockerfile is built, you'll have exactly what you need. In this course, Jonathan Fernandes helps data scientists get up and running with Docker, demonstrating how to build a Dockerized ML application that can easily be shared. Along the way, he shares common use cases for the tool. Upon wrapping up this course, you'll be prepared to leverage the power of containers in your other ML projects.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Tensorflow: کار با NLP
آموزش پیاده سازی هوش مصنوعی عکس ها با PyTorch
Introduction to Deep Learning with OpenCV
آموزش انجام پروژه های Deep Learning با OpenCV
دوره یادگیری کامل Apache PySpark
PyTorch Essential Training: Deep Learning
یادگیری پایتون از طریق حل چالش های معمول این زبان
آموزش مبتنی بر مثال یادگیری ماشینی در AWS
ترانسفورماتورها: طبقه بندی متن برای NLP با استفاده از BERT
Apache Spark Deep Learning Essential Training
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها