در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Data scientists create data models that need to run in production environments. Many DevOps practices are relevant to production-oriented data science applications, but these practices are often overlooked in data science training. In addition, data science and machine learning have distinct requirements, such as the need to revise models while in use. This course was designed for data scientists who need to support their models in production, as well as for DevOps professionals who are tasked with supporting data science and machine learning applications. Learn about key data science development practices, including the testing and validation of data science models. This course also covers how to use the Predictive Model Markup Language (PMML), monitor models in production, work with Docker containers, and more.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
مدل سازی داده ها در Cassandra
Google Cloud Professional Database Engineer Exam Prep
دوره یادگیری کامل Spark SQL, DataFrames
BigQuery برای تحلیلگران داده
Advanced SQL for Query Tuning and Performance Optimization
آموزش مباحث سطح متوسط SQL برای Data Science
Google Cloud Machine Learning Engineer Certification Prep
آموزش طراحی دیتابیس های SQL مناسب برای Highly Scalable and Highly Available
Complete Guide to Generative AI for Data Analysis and Data Science
آموزش عبارات منظم در برنامه نویسی .NET
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها