وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Data-Centric AI: Best Practices, Responsible AI, and More

سرفصل های دوره

Machine learning typically focuses on producing effective models for a given dataset. In real-world applications, data is messy and improving models is not the only way to get better performance. Data-centric AI (DCAI) is an emerging science that studies techniques to improve datasets, which is often the best way to improve performance in practical ML applications. While data scientists have long practiced this manually via ad hoc trial/error and intuition, DCAI considers the improvement of data as a systematic engineering discipline. In this course, Aishwarya Srinivasan covers the data-centric principles that guide our path forward in this new age of AI as we shift from a model-centric approach to a data-centric paradigm. Learn about DCAI—what it is and the value it offers. Aishwarya covers the DCAI workflow; MLOps as part of DCAI; data validation and preprocessing; model validation; bias detection and mitigation; responsible AI; and more.


01 - Introduction
  • 01 - A different approach to AI
  • 02 - Overview of the course objectives and agenda

  • 02 - 1. What Is Data-Centric AI
  • 01 - Introduction to data-centric AI
  • 02 - Understanding the role of data in AI and machine learning
  • 03 - Data quality and reliability in AI applications

  • 03 - 2. Why Is Data-Centric AI Important
  • 01 - Significance of data-centric AI in real-world scenarios
  • 02 - Benefits of adopting a data-centric approach in AI projects
  • 03 - Case studies highlighting the impact of data-centric AI

  • 04 - 3. Workflow of Data-Centric AI
  • 01 - End-to-end workflow of data-centric AI
  • 02 - Deep dive into data-centric AI components
  • 03 - Iterative nature of the workflow for ML applications

  • 05 - 4. MLOps Introduction and Importance
  • 01 - Purpose of MLOps (Machine Learning Operations)
  • 02 - Challenges faced in deploying and maintaining ML models

  • 06 - 5. Building Optimized MLOps with Data-Centric AI
  • 01 - Adding data-centric AI principles into the MLOps workflow
  • 02 - Data personas in MLOps workflow
  • 03 - Optimizing the MLOps process Development
  • 04 - Optimizing the MLOps process Productionalizing

  • 07 - 6. Data-Centric AI in Action
  • 01 - Data validation, train-test validation, and model validation
  • 02 - Best practices
  • 03 - Code example Exploration

  • 08 - 7. Explainability and Interpretability
  • 01 - Importance of model explainability and interpretability
  • 02 - Techniques for understanding and interpreting ML models
  • 03 - Code example Model validation

  • 09 - 8. Bias Detection and Mitigation
  • 01 - Discussion on the challenges of bias in AI systems
  • 02 - Detecting and mitigating bias in data-centric AI projects
  • 03 - Code example Bias detection and mitigation

  • 10 - 9. Data Drift and Model Drift
  • 01 - Monitoring and maintaining ML models in production
  • 02 - Understanding data drift and model drift

  • 11 - 10. Responsible AI
  • 01 - Introduction to ethical considerations in AI
  • 02 - Principles for responsible AI development and deployment

  • 12 - Conclusion
  • 01 - Closing remarks and next steps for further learning
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 33590
    حجم: 322 مگابایت
    مدت زمان: 171 دقیقه
    تاریخ انتشار: 7 فروردین 1403
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید