وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

CRISP-ML(Q)-Data Pre-processing Using Python(2023)

سرفصل های دوره

Data Science - Data Pre-processing Using Python


1. Introduction
  • 1. Introduction to Project Management Methodology CRISP ML(Q)
  • 2. Agenda & Stages of Analytics
  • 3. What is Diagnostic Analytics
  • 4. What is Predictive Analytics
  • 5. What is Prescriptive Analytics
  • 6. What is CRISP ML (Q)

  • 2. Business Understanding Phase
  • 1. Business Understanding - Define the Scope of Application
  • 2. Business Understanding - Define Success Criteria
  • 3. Business Understanding - Use Cases

  • 3. Data Understanding Phase Data Types
  • 1. Agenda Data Understanding
  • 2. Introduction to Data Understanding
  • 3. Data types-continuous data (vs) Discrete data
  • 4. Categorical Data Vs Count Data
  • 5. Practical Data Understanding Using Realtime Example
  • 6. Scale of Measurement
  • 7. Quantitative (vs) Qualitative
  • 8. Structured Vs Unstructured Data
  • 9. Bigdata vs Not Big Data
  • 10. Cross Sectional vs Time Series vs PanelLongitudinal Data
  • 11. Balanced vs Imbalanced (or) Rare Events
  • 12. Batch data(offline) vs Live streming data(Online)

  • 4. Data Understanding Phase Data Collection
  • 1. What is Data collection
  • 2. Understanding Secondary Datasources
  • 3. Understanding Primary Datasources
  • 4. Understanding Data collection using survey
  • 5. Understanding Data collection using DoE
  • 6. Understanding Possible Errors in Data Collection Stage
  • 7. Understanding Bias & Fairness

  • 5. Understanding Basic Statistics
  • 1. Introduction to CRISP ML(Q) Data Preparation & Agenda
  • 2. What is Probability
  • 3. What is Random Variables
  • 4. Understanding Probability and its Application, Probability Distribution
  • 5. What is Inferencial Statistics

  • 6. Data Preparation Phase Exploratory Data Analysis (EDA)
  • 1. Recap of Priliminaries Concepts
  • 2. Understanding Normal Distribution
  • 3. Understanding Standard Normal Distribution & Whats is Z Scores
  • 4. Understanding Measures of central tendency ( First moment business decession )
  • 5. Understanding Measures of Dispersion ( Second moment business decision)
  • 6. Understanding Box Plot(Diff B-w Percentile and Quantile and Quartile)
  • 7. Understanding Graphical Techniques-Q-Q-Plot
  • 8. Understanding about Bivariate Scatter Plot

  • 7. Python Installation & Set-up
  • 1. Python Installation
  • 2. Anakonda Installation
  • 3. Understand about Anakonda Navigator & Spyder & Python Libraries
  • 4. Understand about Jupyter & Google Colab

  • 8. Data Preparation Phase EDA Using Python
  • 1. Recap of Concepts until Phase-2
  • 2. Understanding 1st & 2nd Moment Business Decision Using Python
  • 3. Understanding 3rd Moment Business Decision Using Python
  • 4. Understanding 4th Moment Business Decision Using Python
  • 5. Understanding Unvariate (Bar Plot & Histogram) Using Python
  • 6. Understanding Unvariate Plots Using Python
  • 7. Understanding Unvariate Box Plot Using Python
  • 8. Understanding Unvariate Q-Q-Plot Using Python
  • 9. Understanding Bivariate Scatter Plot Using Python

  • 9. Data Preparation Phase Data Cleansing- Type Casting
  • 1. Recap of Concepts
  • 2. Understanding Data Cleansing Typecasting
  • 3. Understanding Data Cleansing Typecasting Using Python

  • 10. Data Preparation Phase Data Cleansing- Handling Duplicates
  • 1. Recap of Concepts
  • 2. Understanding Handling Duplicates
  • 3. Understanding Handling Duplicates Using Python

  • 11. Data Preparation Phase Data Cleansing-Outlier Analysis Treatment
  • 1. Understanding Outlier Analysis Treatment
  • 2. Understanding Outlier Analysis Treatment Using Python
  • 3. Understanding Winsorization Using Python

  • 12. Data Preparation Phase Data Cleansing-Zero & Variance Features
  • 1. Understanding Zero & Variance Features using Python

  • 13. Data Preparation Phase Data Cleansing-Discretization Techniques
  • 1. Understanding Discretization Techniques - Binarization & Rounding & Binning

  • 14. Data Preparation Phase Data Cleansing-Dummy Variable Creation
  • 1. Understanding Encoding Technique - Binary Encoding
  • 2. Understanding Encoding Technique - Ordinal Encoding & Attribute Construction
  • 3. Understanding Binarization & Discretization Using Python
  • 4. Understanding Dummpy Variables Using Python
  • 5. Understanding One Hot & Label Encoding Using Python
  • 6. Understanding about Attribute Construction

  • 15. Data Preparation Phase Data Cleansing-Missing Values
  • 1. Understanding Missing Values Variants - MCAR, MAR, MNAR
  • 2. Understanding Missing Values Imputation Technique - Deletion & Single Imputat
  • 3. Understanding Missing Values Imputation Types Using Python

  • 16. Data Preparation Phase Data Cleansing-Transformation
  • 1. Understanding Log & Exponential Transformation, Normal Q-Q Plot Using Python
  • 2. Understanding Power, Sqrt, Reciprocal Transformations
  • 3. Understanding Box-Cox Transformations Using Python
  • 4. Understanding Yeo -Johnson Transformations Using Python

  • 17. Data Preparation Phase Data Cleansing-Standarzation
  • 1. Understanding Data Preprocessing - Data Scaling Method
  • 2. Understanding Normalization & Standardization & Q-Q Plot & Robust Scaling
  • 3. Normalization & Standardization & Q-Q Plot & Robust Scaling Using Python
  • 4. Understanding Feature Extraction & Feature Selection
  • 5. What is AutoEDA and Understanding Sweetviz Using Python
  • 6. Understanding Auto Clean Library Using Python
  • 7. Understanding Autoviz, D-Tale, Pandas Profilling & Data Prep Using Python
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 11874
    حجم: 12292 مگابایت
    مدت زمان: 1188 دقیقه
    تاریخ انتشار: 23 اردیبهشت 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید