وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Complete MLOps Bootcamp | From Zero to Hero in Python 2022

سرفصل های دوره

Advanced hands-on bootcamp of MLOps with MLFlow, Scikit-learn, CI/CD, Azure, FastAPI, Gradio, SHAP, Docker, DVC, Flask..


1. Challenges and evolution of Machine Learning
  • 1. Course material.html
  • 2. Introduction to Machine Learning
  • 3. Benefits of Machine Learning
  • 4. MLOps Fundamentals
  • 5. DevOps and DataOps Fundamentals
  • Exercise Files.zip

  • 2. Fundamentos de MLOps
  • 1. Problems that MLOps solves
  • 2. MLOps Components
  • 3. MLOps Toolbox

  • 3. Etapas del MLOps
  • 1. MLOps stages

  • 4. Instalacion de herramientas y librerias
  • 1. Jupyter Notebook Basics
  • 2. Installing Docker and Ubuntu

  • 5. MLOps Phase 1 Solution Design
  • 1. Volere design and implementation

  • 6. MLOps Phase 2 Automating the ML Model Cycle
  • 1. AutoML Basics
  • 2. Building a model from start to finish with Pycaret
  • 3. EDA and Advanced Preprocessing with Pycaret
  • 4. Development of advanced models (XGBoost, CatBoost, LightGBM) with Pycaret)
  • 5. Production deployment with Pycaret

  • 7. MLOps phase 2 Registration and versioning of the model
  • 1. Registration and versioning of models with MLFlow
  • 2. Registering a Scikit-Learn model with MLFlow
  • 3. Registering the Pycaret model with MLFlow

  • 8. Model interpretability
  • 1. Basics of interpretability with SHAP
  • 2. Interpreting Scikit Learn models with SHAP
  • 3. Interpreting models with SHAP in Pycaret

  • 9. Putting models into production
  • 1. Commissioning of Models

  • 10. MLOps Phase 3 Model serving with Web Applications
  • 1. Serve the model through a Web Application
  • 2. Basic Gradio commands
  • 3. Development of a Gradio web application for Machine Learning
  • 4. Automated web application development with Pycaret

  • 11. Flask for application development
  • 1. Flask Basics
  • 2. Building a project from start to finish with Flask
  • 3. Back-end development with Flask and front-end development with HTML and CSS

  • 12. Docker and containers for Machine Learning
  • 1. Containers to isolate our applications
  • 2. Docker and Kubernetes Basics
  • 3. Generating a container for an ML API with Docker
  • 4. Docker to generate a container of a web application from Flask, HTML

  • 13. Deploy Flask app to Cloud with Azure Container
  • 1. Putting the ML application into production in Azure Container with Docker

  • 14. Despliegue de modelos en Azure
  • 1. Model training and production deployment in Azure Blob Storage
  • 2. Download the Azure Blob Storage model and get predictions
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 8814
    حجم: 936 مگابایت
    مدت زمان: 133 دقیقه
    تاریخ انتشار: ۱۰ فروردین ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید