وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Complete Guide to Generative AI for Data Analysis and Data Science

سرفصل های دوره

GenAI has the potential to enable many more people to work with and analyze data, but to succeed, you need a solid foundation in data management, statistics, and machine learning. This course provides that foundation. Instructor Dan Sullivan teaches how to break down business questions and data science questions into components that can be addressed programmatically and then how to use genAI to create programs and scripts to implement a solution. This course focuses on the three pillars needed to be a successful data analyst or data scientist: problem solving skills, an understanding of statistics and machine learning, and practical experience with data management procedures.


01 - Introduction
  • 01 - Getting started

  • 02 - 1. Demystifying Data Data Analysis and Data Science
  • 01 - Asking questions
  • 02 - Collecting and obtaining data
  • 03 - Cleaning and preparing data
  • 04 - Analyzing data
  • 05 - Predictive modeling
  • 06 - Machine learning
  • 07 - Interpret the results

  • 03 - 2. Tools of the Trade
  • 01 - Problem-solving
  • 02 - Statistics
  • 03 - Machine learning algorithms
  • 04 - Spreadsheets
  • 05 - Python
  • 06 - SQL and relational databases
  • 07 - Statistics platforms
  • 08 - Machine learning libraries

  • 04 - 3. Thinking About Data
  • 01 - Quantitative and qualitative data
  • 02 - Discrete vs. continuous data
  • 03 - Categorical data

  • 05 - 4. Techniques for Describing Data
  • 01 - Measures of central tendency
  • 02 - Measures of spread
  • 03 - Visualizing data distribution
  • 04 - Describing a dataset using generative AI
  • 05 - Challenge Describing data
  • 06 - Solution Describing data

  • 06 - 5. Distributions of Data
  • 01 - Distributions of data
  • 02 - Visualizing a normal distribution in a spreadsheet
  • 03 - Jupyter Notebook and Colab
  • 04 - Generating a normal distribution
  • 05 - Visualizing a normal distribution in Python
  • 06 - Visualizing a uniform distribution in Python
  • 07 - Visualizing a bimodal distribution in Python
  • 08 - Challenge Distributions of data
  • 09 - Solution Distribution of data

  • 07 - 6. Sampling Data
  • 01 - Sampling and large populations
  • 02 - Creating samples
  • 03 - Saving samples to a file
  • 04 - Comparing population to sample statistics
  • 05 - Challenge Sampling data
  • 06 - Solution Sampling data

  • 08 - 7. Making Inferences from Data
  • 01 - Inferential statistics
  • 02 - Hypothesis testing methodology
  • 03 - Analyzing customer preferences
  • 04 - Type I and type II errors
  • 05 - ANOVA tests for comparing means
  • 06 - Generating Python scripts for ANOVA
  • 07 - Testing independence of categorical variables
  • 08 - Generating Python Scripts for Chi-squared tests
  • 09 - Correlation analysis
  • 10 - Testing for normality
  • 11 - Generating Python for testing normality
  • 12 - Generating Python for correlation analysis
  • 13 - Challenge Making inferences from data
  • 14 - Solution Making inferences from data

  • 09 - 8. Visualizing Data
  • 01 - Visualizing data
  • 02 - Visualizing trends
  • 03 - Visualizing correlations
  • 04 - Visualizing composition
  • 05 - Visualizing distributions
  • 06 - Challenge Visualizing data
  • 07 - Solution Visualizing data

  • 10 - 9.Regression
  • 01 - Linear regression
  • 02 - Evaluating linear regression models
  • 03 - Visualizing sales data
  • 04 - Building a linear regression model
  • 05 - Evaluating a sales linear regression model
  • 06 - Challenge Building a regression model
  • 07 - Solution Building a regression model

  • 11 - 10. Analyzing Data in Files
  • 01 - Data files
  • 02 - Using spreadsheets with CSV files
  • 03 - Reviewing an example JSON file
  • 04 - Using jq with JSON files
  • 05 - Generating jq commands using AI
  • 06 - Dataframes in Python
  • 07 - Loading CSV data into dataframes
  • 08 - Loading JSON into dataframes
  • 09 - Inspecting dataframes
  • 10 - Data quality and data cleansing
  • 11 - Using AI for data quality and data cleansing
  • 12 - Challenge Missing data
  • 13 - Solution Missing data

  • 12 - 11. Analyzing Data in Databases
  • 01 - Relational databases
  • 02 - NoSQL databases
  • 03 - Extraction, transformation, and loading data into databases
  • 04 - Introduction to SQL
  • 05 - Creating tables and inserting data
  • 06 - Querying data with SQL
  • 07 - Joining data with SQL
  • 08 - Descriptiive statistics in SQL
  • 09 - Generating synthetic data sets for a relational database
  • 10 - Generating a star schema, synthetic data, and queries
  • 11 - Challenge Generate a relational data model
  • 12 - Solution Generate a relational data model

  • 13 - 12. Introduction to Machine Learning
  • 01 - Supervised and unsupervised learning
  • 02 - Classification
  • 03 - Regression
  • 04 - Clustering
  • 05 - Machine learning lifecycle
  • 06 - Feature engineering
  • 07 - Model evaluation

  • 14 - 13. Building Machine Learning Models Classification
  • 01 - Simple classification model
  • 02 - Handling missing data
  • 03 - Comparing multiple algorithms
  • 04 - Classification with neural networks
  • 05 - Hyperparameter tuning
  • 06 - Evaluating feature importance
  • 07 - Challenge Predicting consumer intent
  • 08 - Solution Predicting consumer intent
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 42848
    حجم: 941 مگابایت
    مدت زمان: 484 دقیقه
    تاریخ انتشار: ۲۹ دی ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید