وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Breaking into Data Science & Machine Learning with Python

سرفصل های دوره

If you have any quantitative, STEM or business background this course is for you to break into data science using Python


1. Data Science Tool Box
  • 1. Welcome to the course!
  • 2.1 Anaconda download link for windows.html
  • 2.2 anaconda_installation.pdf
  • 2. Installing Anaconda
  • 3.1 exploring_jupyter_notebook.pdf
  • 3. Exploring Jupyter Notebook
  • 4.1 first_try.zip
  • 4. Let's Try Some Coding Together in Jupyter Note Book

  • 2. Python Crash Course
  • 1. Python Crash Course Overview
  • 2.1 python-vocab.pdf
  • 2.2 welcome_to_python.zip
  • 2. Simple Input and Output in Python
  • 3.1 strings.zip
  • 3. String in Python
  • 4.1 numerics.zip
  • 4. Playing with Numbers
  • 5.1 list.zip
  • 5. List in Python
  • 6.1 tuple.zip
  • 6. Tuple
  • 7.1 dictionary.zip
  • 7. Dictionary in Python
  • 8.1 dictionary_2.zip
  • 8. More on Python Dictionary
  • 9.1 boolean.zip
  • 9. Boolean in Python
  • 10.1 comparison_operators.zip
  • 10. Example of Boolean Data Types
  • 11.1 if_else.zip
  • 11. Conditional Statement in Python if else
  • 12.1 loop.zip
  • 12. Loop in Python
  • 13.1 function.zip
  • 13. How to Write Function in Python

  • 3. Obtaining Data
  • 1. Overview of data obtaining, cleaning and exploratory analysis
  • 2.1 loading_data_from_flat_files.zip
  • 2. Reading Data From CSV File Part 1
  • 3.1 loading_data_from_flat_files.zip
  • 3. Reading Data From CSV File Part 2
  • 4.1 loading_data_from_excel.zip
  • 4. Reading Data From Excel File
  • 5.1 load_from_sql.zip
  • 5. Obtaining Data From SQL Server
  • 6.1 loading data from api.zip
  • 6. Obtaining Data From API

  • 4. Cleaning Data
  • 1.1 data sanity check.zip
  • 1. Sanity Check
  • 2.1 data_cleaning.zip
  • 2. Data Cleaning
  • 3.1 ex_cleaning_eda.zip
  • 3. Data Cleaning Excercise
  • 4.1 sol_ex_cleaning_eda-copy1.zip
  • 4. Solution to Data Cleaning Exercise, Part 1
  • 5.1 apply_function.zip
  • 5. Pandas Apply Function
  • 6.1 sol_ex_cleaning_eda-copy1.zip
  • 6. Solution to Data Cleaning Exercise, Part 2

  • 5. Exploratory Data Analysis (EDA)
  • 1. Exploratory Data Analysis Part 1
  • 2. Exploratory Data Analysis Part 2
  • 3. Exercise on EDA
  • 4. Panda's Group By Function
  • 5. Solution to EDA Exercise

  • 6. Data Visualization
  • 1. Introduction to Data Visualization
  • 2. Line Plots
  • 3. Different Types of Chart
  • 4. Categorical Data Visualization Part 1 - Distribution Plots
  • 5. Categorical Data Visualization Part 2 - Violin Plots
  • 6. Categorical Data Visualization Part 3 - Violin Plots
  • 7. Categorical Data Visualization Part 4 - Bar Plots and more
  • 8. Spatial Data Visualization Part 1
  • 9. Spatial Data Visualization Part 2
  • 10. Time Series Data Visualization Part 1
  • 11. Time Series Data Visualization Part 2 - Seaborn Example
  • 12. Time Series Data Visualization Part 3 - Plotly Example
  • 13. Plotly Installation Guideline

  • 7. Data WranglingManipulation
  • 1. Data Wrangling Introduction
  • 2. SlicingFiltering Part 1
  • 3. SlicingFiltering Part 2
  • 4. SlicingFiltering Part 3
  • 5. SlicingFiltering Part 4
  • 6. SlicingFiltering Part 5
  • 7. SlicingFiltering Part 6
  • 8. Aggregation
  • 9. Aggregation Excercise
  • 10. Aggregation Exercise Solution
  • 11. Reshaping Part 1- Pivot
  • 12. Reshaping Part 2 (Stacking)
  • 13. Reshaping Part 3 (Unstacking)
  • 14. MergeJoinConcatenation
  • 15. Reshaping Exercise
  • 16. Reshaping Exercise Solution

  • 8. Predictive Analysis with Machine Learning
  • 1.1 iris.zip
  • 1.2 machine_learning_overview.zip
  • 1. Introduction to Machine Learning with an Example
  • 2. Different Types of Machine Learning

  • 9. Linear Regression
  • 1. Introduction to Linear Regression
  • 2.1 diabetes.csv
  • 2.2 linear_regression_1.zip
  • 2. Linear Regression Part 1
  • 3.1 diabetes.csv
  • 3.2 linear_regression_2.zip
  • 3. Linear Regression Part 2
  • 4. Model Metrics
  • 5.1 kc_house_data.csv
  • 5.2 lin_reg_ex.zip
  • 5. Excercise
  • 6.1 kc_house_data.csv
  • 6.2 lin_reg_ex_eda.zip
  • 6. Exploratory Data Analysis for the Excercise
  • 7.1 kc_house_data.csv
  • 7.2 lin_reg_ex_fe.zip
  • 7. Solution of Exercise Feature Engineering
  • 8.1 lin_reg_ex_model.zip
  • 8. Solution of Exercise Model Building
  • 9.1 lin_reg_ex_model_improvement.zip
  • 9. Solution of Exercise Model Enhancement

  • 10. Logistic Regression
  • 1.1 diabetes.csv
  • 1.2 log_reg1.zip
  • 1. Introduction to Logistic Regression With an Example
  • 2.1 log_reg2_sigmoid.zip
  • 2. Explaining Sigmoid Function The Math Behind the Magic
  • 3.1 log_reg2_sigmoid.zip
  • 3. Explaining Math of LogitLogistic Function
  • 4.1 diabetes.csv
  • 4.2 log_reg_model.zip
  • 4. Logistic Regression Model Building
  • 5.1 log_reg_model_eval.zip
  • 5. Model Evaluation
  • 6.1 log_reg_model_eval.zip
  • 6. Model Evaluation Part 2
  • 7.1 log_reg_model_accuracy.zip
  • 7. Explaining Math of Model Accuracy Calculation
  • 8.1 log_reg_model_confusion_matrix.zip
  • 8. Confusion Matrix Math and Code
  • 9.1 log_reg_precision_recall.zip
  • 9. PrecisionRecall Calculation
  • 10.1 log_reg_precision_recall.zip
  • 10. F-1 Score
  • 11.1 log_reg_roc.zip
  • 11. ROCAUC
  • 12.1 log_reg_metrices.zip
  • 12. Summarizing Model Performance Metrices
  • 13.1 log_reg_cv.zip
  • 13. Cross Validation
  • 14.1 log_reg_model_selection.zip
  • 14. Model Selection

  • 11. Multinomial Logistic Regression
  • 1. Introduction to Multinomial Logistic Regression
  • 2. Exercise
  • 3.1 human_acticvity_calssifier.zip
  • 3.2 UCI HAR Dataset.zip
  • 3. Solution Model Building
  • 4.1 human_acticvity_calssifier_excercise.zip
  • 4. Accuracy Calculation
  • 5.1 human_acticvity_calssifier_excercise.zip
  • 5. Confusion Matrix
  • 6.1 human_acticvity_calssifier_excercise.zip
  • 6. PrecisionRecall
  • 7. ROC and AUC

  • 12. Naive Bayes Algorithm
  • 1. Introduction to Naive Bayes classifier
  • 2. Model Building
  • 3. Naive Bayes vs Logistic Regression
  • 4. Multinomial Naive Bayes classifier
  • 5. Text Classifier A Practical Example

  • 13. Decision Tree Based Algorithm
  • 1. Decision Tree Based Algorithm
  • 2. Random Forest
  • 3. Tree Visualization for Random Forest
  • 4. Comparison of Classifiers

  • 14. K-NN Classifier
  • 1. K-NN Classifier
  • 2. Excercise

  • 15. Important Machine Learning Concepts
  • 1. Bias
  • 2. Variance

  • 16. Journey to be a Data Scientist
  • 1. Data Science Career Prospects and Path
  • 2. Data Science Job Search
  • 3. Thank you!
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 1256
    حجم: 9075 مگابایت
    مدت زمان: 1348 دقیقه
    تاریخ انتشار: 26 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید