وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

AWS Certified Machine Learning – Specialty (MLS-C01) – 2023

سرفصل های دوره

AWS Certified Machine Learning – Specialty (MLS-C01) - 2023 ,Sagemaker , AWS MLOps, Data Engineering, Exam Ready Updated


1 - About Certification Exam Course
  • 1 - About the Course Instructor Best Practices to Succeed
  • 2 - Checklist of Domain 1 Data Engineering

  • 2 - Domain 1 Data Engineering
  • 3 - Domain 1 Hands On Attachment Files.html
  • 3 - Domain-1-Data-Engineering.zip
  • 4 - Introduction to Data Engineering Data Ingestion Tools
  • 5 - Data Engineering Tools
  • 6 - Working with S3 and Storage Classes
  • 7 - Creating the S3 Bucket from Console
  • 8 - Setting up the AWS CLI
  • 9 - Create Bucket from AWS CLI Lifecycle Events
  • 10 - S3 Intelligent Tiering Hands On
  • 11 - Cleanup Activity 2
  • 12 - S3 Data Replication for Recovery Point
  • 13 - Security Best Practices and Guidelines for Amazon S3
  • 14 - Introduction to Amazon Kinesis Service
  • 15 - Ingest Streaming data using Kinesis Stream Hands On
  • 16 - Build a streaming system with Amazon Kinesis Data Streams Hands On
  • 17 - Streaming data to Amazon S3 using Kinesis Data Firehose Hands On
  • 18 - Hands On Generate Kinesis Data Analytics
  • 19 - Work with Amazon Kinesis Data Stream and Kinesis Agent
  • 20 - Understanding AWS Glue
  • 21 - Discover the Metadata using AWS Glue Crawlers
  • 22 - Data Transformation wth AWS Glue DataBrew
  • 23 - Perform ETL operation in Glue with S3
  • 24 - Understanding Athena
  • 25 - Querying S3 data using Amazon Athena
  • 26 - Understanding AWS Batch
  • 27 - Data Engineering with AWS Step
  • 28 - Working with AWS Step Functions
  • 29 - Create Serverless workflow with AWS Step
  • 30 - Working with states in AWS Step function
  • 31 - Machine Learning and AWS Step Functions
  • 32 - Feature Engineering with AWS Step and AWS Glue
  • 33 - Summary and Key topics to Focus on Module 1

  • 3 - Domain 2 Exploratory Data Analysis
  • 34 - Domain 2 Hands On Attachment Files.html
  • 34 - Domain-2-EDA.zip
  • 35 - Introduction to Exploratory Data Analysis
  • 36 - Hands On EDA
  • 37 - Types of Data the respective analysis
  • 38 - Statistical Analysis
  • 39 - Descriptive Statistics Understanding the Methods
  • 40 - Definition of Outlier
  • 41 - EDA Hands on Data Acquisition Data Merging
  • 42 - EDA Hands on Outlier Analysis and Duplicate Value Analysis
  • 43 - Missing Value Analysis
  • 44 - Fixing the ErrorsTypos in dataset
  • 45 - Data Transformation
  • 46 - Dealing with Categorical Data
  • 47 - Scaling the Numerical data
  • 48 - Visualization Methods for EDA
  • 49 - Imbalanced Dataset
  • 50 - Dimensionality Reduction PCA
  • 51 - Dimensionality Reduction LDA
  • 52 - Amazon QuickSight
  • 53 - Apache Spark EMR

  • 4 - Domain 3 Modelling
  • 54 - Domain 3 Hands On Attachment files.html
  • 54 - Domain-3-Modeling.zip
  • 55 - Introduction to Domain 3 Modelling
  • 56 - Introduction to Machine Learning
  • 57 - Types of Machine Learning
  • 58 - Linear Regression Evaluation Functions
  • 59 - Regularization and Assumptions of Linear Regression
  • 60 - Logistic Regression
  • 61 - Gradient Descent
  • 62 - Logistic Regression Implementation and EDA
  • 63 - Evaluation Metrics for Classification
  • 64 - Decision Tree Algorithms
  • 65 - Loss Functions of Decision Trees
  • 66 - Decision Tree Algorithm Implementation
  • 67 - Overfit Vs Underfit Kfold Cross validation
  • 68 - Hyperparameter Optimization Techniques
  • 69 - Quick Checkin on the Syllabus
  • 70 - KNN Algorithm
  • 71 - SVM Algorithm
  • 72 - Ensemble Learning Voting Classifier
  • 73 - Ensemble Learning Bagging Classifier Random Forest
  • 74 - Ensemble Learning Boosting Adabost and Gradient Boost
  • 75 - Emsemble Learning XGBoost
  • 76 - Clustering Kmeans
  • 77 - Clustering Hierarchial Clustering
  • 78 - Clustering DBScan
  • 79 - Time Series Analysis
  • 80 - ARIMA Hands On
  • 81 - Reccommendation Amazon Personalize
  • 82 - Introduction to Deep Learning
  • 83 - Introduction to Tensorflow Create first Neural Network
  • 84 - Intuition of Deep Learning Training
  • 85 - Activation Function
  • 86 - Architecture of Neural Networks
  • 87 - Deep Learning Model Training Epochs Batch Size
  • 88 - Hyperparameter Tuning in Deep Learning
  • 89 - Vanshing Exploding Gradients Initializations Regularizations
  • 90 - Introduction to Convolutional Neural Networks
  • 91 - Implementation of CNN on CatDog Dataset
  • 92 - Transfer Learning for Computer Vision
  • 93 - Feed Forward Neural Network Challenges
  • 94 - RNN Types of Architecture
  • 95 - LSTM Architecture
  • 96 - Attention Mechanism
  • 97 - Transfer Learning for Natural Language Data
  • 98 - Transformer Architecture Overview

  • 5 - Domain 4 Machine Learning Implementation and Operations
  • 99 - Domain 4 Attachment Files.html
  • 99 - Domain-4-Machine-learning-Deployment.zip
  • 100 - Introduction to Domain 4 Machine Learning Implementation and Operations
  • 101 - Serverless AWS Lambda Part 1
  • 102 - Introduction to Docker Creating the Dockerfile
  • 103 - Serverless AWS Lambda Part 2
  • 104 - Cloudwatch
  • 105 - End to End Deployment with AWS Sagemaker End Point
  • 106 - AWS Sagemaker JumpStart
  • 107 - AWS Polly
  • 108 - AWS Transcribe
  • 109 - AWS Lex
  • 110 - Retrain Pipelines
  • 111 - Model Lineage in Machine Learning
  • 112 - Amazon Augmented AI
  • 113 - Amazon CodeGuru
  • 114 - Amazon Comprehend Amazon Comprehend Medical
  • 115 - AWS DeepComposer
  • 116 - AWS DeepLens
  • 117 - AWS DeepRacer
  • 118 - Amazon DevOps Guru
  • 119 - Amazon Forecast
  • 120 - Amazon Fraud Detector
  • 121 - Amazon HealthLake
  • 122 - Amazon Kendra
  • 123 - Amazon Lookout for equipment Metrics Vision
  • 124 - Amazon Monitron
  • 125 - AWS Panorama
  • 126 - Amazon Rekognition
  • 127 - Amazon Translate
  • 128 - Amazon Textract
  • 129 - Next Steps

  • 6 - Machine Learning for Projects
  • 130 - ML Deployment Files.html
  • 130 - end-to-end-deployment-v1.zip
  • 131 - Machine learning Deployment Part 1 Model Prep End to End
  • 132 - Machine learning Deployment Part 2 Deploy Flask App End to End
  • 133 - Streamlit Tutorial
  • 133 - app.zip

  • 7 - Optional Topics for Additional Learning Text Analytics
  • 134 - Note to Learners on this section.html
  • 135 - Attachment for NLP Pipeline.html
  • 135 - NLP-Attachment-1.zip
  • 136 - NLP Pipeline
  • 137 - Data Extraction and Text Cleaning hands On
  • 138 - Introduction to NLTK library
  • 139 - Tokenization bigrams trigrams and N gram Hands on
  • 140 - POS Tagging Stop Words Removal
  • 141 - Stemming Lemmatization
  • 142 - NER and Wordsense Ambiguation
  • 143 - Introduction to Spacy Library
  • 144 - Hands On Spacy
  • 145 - Summary
  • 146 - NLP Attachment 2.html
  • 146 - NLP-Attachment-2.zip
  • 147 - Vector Representation of Text One Hot Encoding
  • 148 - Understanding BoW Technique
  • 149 - BoW Hands On
  • 150 - Text Representation TFIDF
  • 151 - TFIDF Hands On
  • 152 - Introduction to Word Embeddings
  • 153 - TFIDF Hands On
  • 154 - Understanding the Importance of Vectors Intuition
  • 155 - Hands On Word Embeddings Usage of Pretrained models
  • 156 - Skipgram Word Embeddings Understanding Data Preperation
  • 157 - Skip Gram Model Architecture
  • 158 - Skip Gram Implementation from Scratch
  • 159 - CBOW Model Architecture Hands On
  • 160 - Hyperparameters Negative Sampling and Sub Sampling
  • 161 - Practical Difference between CBOW and Skipgram

  • 8 - Optional Topics for Additional Learning Inferential Statistics
  • 162 - Inferential-Statistics-Attachment.zip
  • 162 - Source code for Inferential Statistics.html
  • 163 - Introduction to Inferential Statistics
  • 164 - Key Terminology of Inferential Statistics
  • 165 - Hands On Population Sample
  • 166 - Types of Statistical Inference
  • 167 - Confidence Interval Margin of Error Confidence Interval Estimation Constru
  • 168 - Demo Margin of Error and Confidence Interval
  • 169 - Hypothesis Testing Steps of Hypothesis testing
  • 170 - ZTest and Example Problem
  • 171 - ZTest Solution Hands On

  • 9 - APPENDIX Other References for Learners
  • 172 - Linux Basics
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 13951
    حجم: 15405 مگابایت
    مدت زمان: 2041 دقیقه
    تاریخ انتشار: 29 خرداد 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید