وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

AWS Certified Machine Learning – Specialty (MLS-C01) – 2023

سرفصل های دوره

AWS Certified Machine Learning – Specialty (MLS-C01) - 2023 ,Sagemaker , AWS MLOps, Data Engineering, Exam Ready Updated


1 - About Certification Exam Course
  • 1 - About the Course Instructor Best Practices to Succeed
  • 2 - Checklist of Domain 1 Data Engineering

  • 2 - Domain 1 Data Engineering
  • 3 - Domain 1 Hands On Attachment Files.html
  • 3 - Domain-1-Data-Engineering.zip
  • 4 - Introduction to Data Engineering Data Ingestion Tools
  • 5 - Data Engineering Tools
  • 6 - Working with S3 and Storage Classes
  • 7 - Creating the S3 Bucket from Console
  • 8 - Setting up the AWS CLI
  • 9 - Create Bucket from AWS CLI Lifecycle Events
  • 10 - S3 Intelligent Tiering Hands On
  • 11 - Cleanup Activity 2
  • 12 - S3 Data Replication for Recovery Point
  • 13 - Security Best Practices and Guidelines for Amazon S3
  • 14 - Introduction to Amazon Kinesis Service
  • 15 - Ingest Streaming data using Kinesis Stream Hands On
  • 16 - Build a streaming system with Amazon Kinesis Data Streams Hands On
  • 17 - Streaming data to Amazon S3 using Kinesis Data Firehose Hands On
  • 18 - Hands On Generate Kinesis Data Analytics
  • 19 - Work with Amazon Kinesis Data Stream and Kinesis Agent
  • 20 - Understanding AWS Glue
  • 21 - Discover the Metadata using AWS Glue Crawlers
  • 22 - Data Transformation wth AWS Glue DataBrew
  • 23 - Perform ETL operation in Glue with S3
  • 24 - Understanding Athena
  • 25 - Querying S3 data using Amazon Athena
  • 26 - Understanding AWS Batch
  • 27 - Data Engineering with AWS Step
  • 28 - Working with AWS Step Functions
  • 29 - Create Serverless workflow with AWS Step
  • 30 - Working with states in AWS Step function
  • 31 - Machine Learning and AWS Step Functions
  • 32 - Feature Engineering with AWS Step and AWS Glue
  • 33 - Summary and Key topics to Focus on Module 1

  • 3 - Domain 2 Exploratory Data Analysis
  • 34 - Domain 2 Hands On Attachment Files.html
  • 34 - Domain-2-EDA.zip
  • 35 - Introduction to Exploratory Data Analysis
  • 36 - Hands On EDA
  • 37 - Types of Data the respective analysis
  • 38 - Statistical Analysis
  • 39 - Descriptive Statistics Understanding the Methods
  • 40 - Definition of Outlier
  • 41 - EDA Hands on Data Acquisition Data Merging
  • 42 - EDA Hands on Outlier Analysis and Duplicate Value Analysis
  • 43 - Missing Value Analysis
  • 44 - Fixing the ErrorsTypos in dataset
  • 45 - Data Transformation
  • 46 - Dealing with Categorical Data
  • 47 - Scaling the Numerical data
  • 48 - Visualization Methods for EDA
  • 49 - Imbalanced Dataset
  • 50 - Dimensionality Reduction PCA
  • 51 - Dimensionality Reduction LDA
  • 52 - Amazon QuickSight
  • 53 - Apache Spark EMR

  • 4 - Domain 3 Modelling
  • 54 - Domain 3 Hands On Attachment files.html
  • 54 - Domain-3-Modeling.zip
  • 55 - Introduction to Domain 3 Modelling
  • 56 - Introduction to Machine Learning
  • 57 - Types of Machine Learning
  • 58 - Linear Regression Evaluation Functions
  • 59 - Regularization and Assumptions of Linear Regression
  • 60 - Logistic Regression
  • 61 - Gradient Descent
  • 62 - Logistic Regression Implementation and EDA
  • 63 - Evaluation Metrics for Classification
  • 64 - Decision Tree Algorithms
  • 65 - Loss Functions of Decision Trees
  • 66 - Decision Tree Algorithm Implementation
  • 67 - Overfit Vs Underfit Kfold Cross validation
  • 68 - Hyperparameter Optimization Techniques
  • 69 - Quick Checkin on the Syllabus
  • 70 - KNN Algorithm
  • 71 - SVM Algorithm
  • 72 - Ensemble Learning Voting Classifier
  • 73 - Ensemble Learning Bagging Classifier Random Forest
  • 74 - Ensemble Learning Boosting Adabost and Gradient Boost
  • 75 - Emsemble Learning XGBoost
  • 76 - Clustering Kmeans
  • 77 - Clustering Hierarchial Clustering
  • 78 - Clustering DBScan
  • 79 - Time Series Analysis
  • 80 - ARIMA Hands On
  • 81 - Reccommendation Amazon Personalize
  • 82 - Introduction to Deep Learning
  • 83 - Introduction to Tensorflow Create first Neural Network
  • 84 - Intuition of Deep Learning Training
  • 85 - Activation Function
  • 86 - Architecture of Neural Networks
  • 87 - Deep Learning Model Training Epochs Batch Size
  • 88 - Hyperparameter Tuning in Deep Learning
  • 89 - Vanshing Exploding Gradients Initializations Regularizations
  • 90 - Introduction to Convolutional Neural Networks
  • 91 - Implementation of CNN on CatDog Dataset
  • 92 - Transfer Learning for Computer Vision
  • 93 - Feed Forward Neural Network Challenges
  • 94 - RNN Types of Architecture
  • 95 - LSTM Architecture
  • 96 - Attention Mechanism
  • 97 - Transfer Learning for Natural Language Data
  • 98 - Transformer Architecture Overview

  • 5 - Domain 4 Machine Learning Implementation and Operations
  • 99 - Domain 4 Attachment Files.html
  • 99 - Domain-4-Machine-learning-Deployment.zip
  • 100 - Introduction to Domain 4 Machine Learning Implementation and Operations
  • 101 - Serverless AWS Lambda Part 1
  • 102 - Introduction to Docker Creating the Dockerfile
  • 103 - Serverless AWS Lambda Part 2
  • 104 - Cloudwatch
  • 105 - End to End Deployment with AWS Sagemaker End Point
  • 106 - AWS Sagemaker JumpStart
  • 107 - AWS Polly
  • 108 - AWS Transcribe
  • 109 - AWS Lex
  • 110 - Retrain Pipelines
  • 111 - Model Lineage in Machine Learning
  • 112 - Amazon Augmented AI
  • 113 - Amazon CodeGuru
  • 114 - Amazon Comprehend Amazon Comprehend Medical
  • 115 - AWS DeepComposer
  • 116 - AWS DeepLens
  • 117 - AWS DeepRacer
  • 118 - Amazon DevOps Guru
  • 119 - Amazon Forecast
  • 120 - Amazon Fraud Detector
  • 121 - Amazon HealthLake
  • 122 - Amazon Kendra
  • 123 - Amazon Lookout for equipment Metrics Vision
  • 124 - Amazon Monitron
  • 125 - AWS Panorama
  • 126 - Amazon Rekognition
  • 127 - Amazon Translate
  • 128 - Amazon Textract
  • 129 - Next Steps

  • 6 - Machine Learning for Projects
  • 130 - ML Deployment Files.html
  • 130 - end-to-end-deployment-v1.zip
  • 131 - Machine learning Deployment Part 1 Model Prep End to End
  • 132 - Machine learning Deployment Part 2 Deploy Flask App End to End
  • 133 - Streamlit Tutorial
  • 133 - app.zip

  • 7 - Optional Topics for Additional Learning Text Analytics
  • 134 - Note to Learners on this section.html
  • 135 - Attachment for NLP Pipeline.html
  • 135 - NLP-Attachment-1.zip
  • 136 - NLP Pipeline
  • 137 - Data Extraction and Text Cleaning hands On
  • 138 - Introduction to NLTK library
  • 139 - Tokenization bigrams trigrams and N gram Hands on
  • 140 - POS Tagging Stop Words Removal
  • 141 - Stemming Lemmatization
  • 142 - NER and Wordsense Ambiguation
  • 143 - Introduction to Spacy Library
  • 144 - Hands On Spacy
  • 145 - Summary
  • 146 - NLP Attachment 2.html
  • 146 - NLP-Attachment-2.zip
  • 147 - Vector Representation of Text One Hot Encoding
  • 148 - Understanding BoW Technique
  • 149 - BoW Hands On
  • 150 - Text Representation TFIDF
  • 151 - TFIDF Hands On
  • 152 - Introduction to Word Embeddings
  • 153 - TFIDF Hands On
  • 154 - Understanding the Importance of Vectors Intuition
  • 155 - Hands On Word Embeddings Usage of Pretrained models
  • 156 - Skipgram Word Embeddings Understanding Data Preperation
  • 157 - Skip Gram Model Architecture
  • 158 - Skip Gram Implementation from Scratch
  • 159 - CBOW Model Architecture Hands On
  • 160 - Hyperparameters Negative Sampling and Sub Sampling
  • 161 - Practical Difference between CBOW and Skipgram

  • 8 - Optional Topics for Additional Learning Inferential Statistics
  • 162 - Inferential-Statistics-Attachment.zip
  • 162 - Source code for Inferential Statistics.html
  • 163 - Introduction to Inferential Statistics
  • 164 - Key Terminology of Inferential Statistics
  • 165 - Hands On Population Sample
  • 166 - Types of Statistical Inference
  • 167 - Confidence Interval Margin of Error Confidence Interval Estimation Constru
  • 168 - Demo Margin of Error and Confidence Interval
  • 169 - Hypothesis Testing Steps of Hypothesis testing
  • 170 - ZTest and Example Problem
  • 171 - ZTest Solution Hands On

  • 9 - APPENDIX Other References for Learners
  • 172 - Linux Basics
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 13951
    حجم: 15405 مگابایت
    مدت زمان: 2041 دقیقه
    تاریخ انتشار: ۲۹ خرداد ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید