در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Machine learning is not magic. The quality of the predictions coming out of your model is a direct reflection of the data you feed it during training. This course with instructor Matt Harrison guides you through the nuances of feature engineering techniques for numeric data so you can take a dataset, tease out the signal, and throw out the noise in order to optimize your machine learning model. Matt teaches you techniques like imputation, binning, log transformations, and scaling for numeric data. He covers methods for other types of data, like as one hot encoding, mean targeting coding, principal component analysis, feature aggregation, and text processing techniques like TFIDF and embeddings. The tools you learn in this course will generalize to nearly any kind of machine learning algorithm/problem, so join Matt in this course to learn how you can extract the maximum value from your data using feature engineering.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Core Python 3: The Numeric Tower, Conversion, and Operators
Core Python 3: The Numeric Tower, Conversion, and Operators
Applied Machine Learning: Algorithms
Getting Started with Python for Finance
Core Python 3: The Numeric Tower, Conversion, and Operators
آموزش خوشه بندی یا Classification بوسیله XGBoost
Python Statistics Essential Training
آموزش کدنویسی اعداد ، تبدیل اعداد و عملگرهای عددی در Python