در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Data engineering is the foundation for building analytics and data science applications in the new Big Data world. Data engineering requires combining multiple big data technologies to construct data pipelines and networks to stream, process, and store data. This course focuses on building full-fledged solutions that combine Apache Spark with other Big Data tools to create end-to-end data pipelines. Instructor Kumaran Ponnambalam begins by defining data engineering, its functions, and its concepts. Next, Kumaran goes over how Spark capabilities such as parallel processing, execution plans, state management options, and machine learning work with extract, transform, load (ETL). He introduces you to batch processing use cases and processes, as well as real-time processing pipelines. After walking you through several useful best practices, Kumaran concludes with an end-to-end exercise project.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Edge AI: Tools and Best Practices for Building AI Applications at the Edge
آموزش پردازش استریم ها بوسیله Kafka Streams
MLOps Essentials: Monitoring Model Drift and Bias
شبکه های عصبی مکرر
تجزیه و تحلیل متن و پیش بینی بوسیله کدنویسی در زبان Python
آموزش مهندسی داده دسته ای با Apache Flink
آموزش ضروری Apache Kafka : شروع به کار
معماری برنامه های کاربردی داده های بزرگ
کورس شبکه های عصبی مکرر
Data Science on Google Cloud Platform: Predictive Analytics
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها