وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

AI and Meta-Heuristics (Combinatorial Optimization) Python

سرفصل های دوره

Graph Algorithms, Genetic Algorithms, Simulated Annealing, Swarm Intelligence, Heuristics, Minimax and Meta-Heuristics


1. Introduction
  • 1. Introduction
  • 2.1 meta_heuristics_ai.zip
  • 2. Slides and source code.html

  • 2. ### GRAPH ALGORITHMS ###
  • 1. Why to consider graph algorithms

  • 3. Breadth-First Search (DFS) Algorithm
  • 1. What is breadth-first search
  • 2.1 breadthfirstsearch.zip
  • 2. Breadth-first search implementation
  • 3. Applications of breadth-first search
  • 4. Breadth-First Search Quiz.html

  • 4. Challange #1 - WebCrawler
  • 1. Course challenge #1 - WebCrawler problem.html
  • 2. What are WebCrawlers (core of search engines)
  • 3.1 webcrawler.zip
  • 3. WebCrawler basic implementation

  • 5. Depth-First Search (DFS) Algorithm
  • 1. What is depth-first search
  • 2.1 depthfirstsearch.zip
  • 2. Depth-first search implementation
  • 3.1 depthfirstsearchrecursion.zip
  • 3. Depth-first search implementation with recursion
  • 4. Depth-first search and stack memory visualization
  • 5. Memory comparison of graph traversal algorithms
  • 6. Applications of depth-first search
  • 7. Depth-First Search Quiz.html

  • 6. Challange #2 - Maze Solver
  • 1. Course challenge #2 - maze problem.html
  • 2. Maze problem introduction
  • 3.1 mazeproblem.zip
  • 3. Maze problem implementation
  • 4. Maze problem stack memory visualization

  • 7. A Search Algorithm
  • 1. What is the A search algorithm
  • 2. A search illustration
  • 3. A search implementation I
  • 4. A search implementation II
  • 5.1 astarsearch.zip
  • 5. A search implementation III
  • 6. Path finding algorithms comparison
  • 7. A Search Quiz.html

  • 8. ### META-HEURISTICS ###
  • 1. What are meta-heuristic approaches
  • 2. Heuristics Quiz.html

  • 9. Simulated Annealing
  • 1. What is simulated annealing
  • 2. Simulated Annealing Quiz.html

  • 10. Simulated Annealing Implementation - Continuous Functions
  • 1. Simulated annealing implementation I
  • 2. Simulated annealing implementation II
  • 3.1 simulatedannealingfunction.zip
  • 3. Simulated annealing implementation III

  • 11. Simulated Annealing Implementation - Combinatorial Optimization
  • 1. What is the travelling salesman problem (TSP)
  • 2. Travelling salesman problem implementation I
  • 3. Travelling salesman problem implementation II
  • 4. Travelling salesman problem implementation III
  • 5.1 simulatedannealingtsp.zip
  • 5. Travelling salesman problem implementation IV

  • 12. Simulated Annealing Implementation - Sudoku
  • 1. What is the Sudoku problem
  • 2. Sudoku problem implementation I
  • 3. Sudoku problem implementation II
  • 4. Sudoku problem implementation III
  • 5.1 simulatedannealingsudoku.zip
  • 5. Sudoku problem implementation IV

  • 13. Genetic Algorithms
  • 1. Genetic algorithms introduction - basics
  • 2. Genetic algorithms introduction - chromosomes
  • 3. Genetic algorithms introduction - crossover
  • 4. Genetic algorithms introduction - mutation
  • 5. Genetic algorithms introduction - selection
  • 6. Genetic algorithms introduction - the algorithm
  • 7. What is elitism
  • 8. Advantages and limitations of genetic algorithms
  • 9. Genetic Algorithms Quiz.html

  • 14. Genetic Algorithms Implementation - Simple Example
  • 1. Genetic algorithm implementation I
  • 2. Genetic algorithm implementation II
  • 3. Genetic algorithm implementation III
  • 4. Genetic algorithm implementation IV
  • 5.1 geneticalgorithmelitism.zip
  • 5. Genetic algorithm implementation V - elitism

  • 15. Genetic Algorithms Implementation - Constraint Satisfaction Problems
  • 1. What is the N-queens problem
  • 2. N queens problem implementation I
  • 3.1 geneticalgorithmnqueens.zip
  • 3. N queens problem implementation II

  • 16. Challenge #3 - Knapsack Problem
  • 1. Course challenge #3 - knapsack problem overview.html
  • 2. What is the knapsack problem
  • 3.1 geneticalgorithmknapsack.zip
  • 3. Knapsack problem implementation

  • 17. Particle Swarm Optimization
  • 1. What is swarm intelligence
  • 2. Particle swarm optimization introduction - basics
  • 3. Particle swarm optimization introduction - the algorithm
  • 4. Exploration and exploitation trade-off
  • 5. Particle Swarm Optimization Quiz.html

  • 18. Particle Swarm Optimization - Simple Example
  • 1. Particle swarm optimization implementation I
  • 2. Particle swarm optimization implementation II
  • 3.1 particleswarmoptimizationfunction.zip
  • 3. Particle swarm optimization implementation III

  • 19. ### TWO PLAYER GAMES ###
  • 1. Game trees introduction
  • 2. Two Player Games Quiz.html

  • 20. Minimax Algorithm - Game Engines
  • 1. Minimax algorithm introduction - basics
  • 2. Minimax algorithm introduction - the algorithm
  • 3. Minimax algorithm introduction - relation to tic-tac-toe
  • 4. Alpha-beta pruning introduction
  • 5. Alpha-beta pruning example
  • 6. Chess problem
  • 7. Game Engines Quiz.html

  • 21. Tic-Tac-Toe Game
  • 1. Tic tac toe implementation I
  • 2. Tic tac toe implementation II
  • 3. Tic tac toe implementation III
  • 4. Tic tac toe implementation IV
  • 5. Tic tac toe implementation V
  • 6.1 minimaxtictactoe.zip
  • 6. Tic tac toe implementation VI
  • 7. Minimax stack memory visualization
  • 8.1 minimaxpruningtictactoe.zip
  • 8. Tic tac toe implementation VII - pruning

  • 22. ### REINFORCEMENT LEARNING ###
  • 1. What is reinforcement learning.html
  • 2. Applications of reinforcement learning

  • 23. Markov Decision Process (MDP) Theory
  • 1. Markov decision processes basics I
  • 2. Markov decision processes basics II
  • 3. Markov decision processes - equations
  • 4. Markov decision processes - illustration
  • 5. Bellman-equation
  • 6. How to solve MDP problems
  • 7. What is value iteration
  • 8. What is policy iteration
  • 9. Mathematical formulation of reinforcement learning.html
  • 10. Reinforcement Learning Basics Quiz.html

  • 24. Exploration vs. Exploitation Problem
  • 1. Exploration vs exploitation problem
  • 2. N-armed bandit problem introduction
  • 3. N-armed bandit problem implementation
  • 4. Applications AB testing in marketing
  • 5. Exploration vs. Exploitation Quiz.html

  • 25. Q Learning Theory
  • 1. What is Q learning
  • 2. Q learning introduction - the algorithm
  • 3. Q learning illustration
  • 4. Mathematical formulation of Q learning.html
  • 5. Q Learning Quiz.html

  • 26. Q Learning Implementation (Tic Tac Toe)
  • 1. Tic tac toe with Q learning implementation I
  • 2. Tic tac toe with Q learning implementation II
  • 3. Tic tac toe with Q learning implementation III
  • 4. Tic tac toe with Q learning implementation IV
  • 5. Tic tac toe with Q learning implementation V
  • 6. Tic tac toe with Q learning implementation VI
  • 7. Tic tac toe with Q learning implementation VII
  • 8.1 qlearningtictactoe.zip
  • 8. Tic tac toe with Q learning implementation VIII

  • 27. ### APPENDIX - PYTHON PROGRAMMING CRASH COURSE ###
  • 1. Python crash course introduction.html

  • 28. Appendix #1 - Python Basics
  • 1. First steps in Python
  • 2. What are the basic data types
  • 3. Booleans
  • 4. Strings
  • 5. String slicing
  • 6. Type casting
  • 7. Operators
  • 8. Conditional statements
  • 9. How to use multiple conditions
  • 10. Exercise conditional statements.html
  • 11. Solution conditional statements.html
  • 12. Logical operators
  • 13. Loops - for loop
  • 14. Loops - while loop
  • 15. Exercise calculating the average.html
  • 16. Solution calculating the average.html
  • 17. What are nested loops
  • 18. Enumerate
  • 19. Break and continue
  • 20. Calculating Fibonacci-numbers
  • 21. Exercise Fibonacci-numbers.html
  • 22. Solution Fibonacci-numbers.html

  • 29. Appendix #2 - Functions
  • 1. What are functions
  • 2. Defining functions
  • 3. Positional arguments and keyword arguments
  • 4. Returning values
  • 5. Returning multiple values
  • 6. Exercise functions.html
  • 7. Solution functions.html
  • 8. Yield operator
  • 9. Local and global variables
  • 10. What are the most relevant built-in functions
  • 11. What is recursion
  • 12. Exercise recursion.html
  • 13. Solution recursion.html
  • 14. Local vs global variables
  • 15. The __main__ function

  • 30. Appendix #3 - Data Structures in Python
  • 1. How to measure the running time of algorithms
  • 2. Data structures introduction
  • 3. What are array data structures I
  • 4. What are array data structures II
  • 5. Lists in Python
  • 6. Lists in Python - advanced operations
  • 7. Lists in Python - list comprehension
  • 8. (!!!) Python lists and arrays.html
  • 9. Exercise list comprehension.html
  • 10. Solution list comprehension.html
  • 11. Measuring running time of lists.html
  • 12. What are tuples
  • 13. Mutability and immutability
  • 14. What are linked list data structures
  • 15. Doubly linked list implementation in Python
  • 16. Hashing and O(1) running time complexity
  • 17. Dictionaries in Python
  • 18. Sets in Python
  • 19. Exercise constructing dictionaries.html
  • 20. Solution constructing dictionaries.html
  • 21. Sorting

  • 31. Appendix #4 - Object Oriented Programming (OOP)
  • 1. What is object oriented programming (OOP)
  • 2. Class and objects basics
  • 3. Using the constructor
  • 4. Class variables and instance variables
  • 5. Exercise constructing classes.html
  • 6. Solution constructing classes.html
  • 7. Private variables and name mangling
  • 8. What is inheritance in OOP
  • 9. The super keyword
  • 10. Function (method) override
  • 11. What is polymorphism
  • 12. Polymorphism and abstraction example
  • 13. Exercise abstraction.html
  • 14. Solution abstraction.html
  • 15. Modules
  • 16. The __str__ function
  • 17. Comparing objects - overriding functions

  • 32. Appendix #5 - NumPy
  • 1. What is the key advantage of NumPy
  • 2. Creating and updating arrays
  • 3. Dimension of arrays
  • 4. Indexes and slicing
  • 5. Types
  • 6. Reshape
  • 7. Exercise reshape problem.html
  • 8. Solution reshape problem.html
  • 9. Stacking and merging arrays
  • 10. Filter
  • 11. Running time comparison arrays and lists.html

  • 33. COURSE MATERIALS
  • 1.1 meta_heuristics_ai.zip
  • 1. Slides and source code.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 1679
    حجم: 5230 مگابایت
    مدت زمان: 1044 دقیقه
    تاریخ انتشار: ۲۷ دی ۱۴۰۱
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید