در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Explore graph neural networks (GNNs) in depth. Instructor Janani Ravi begins by delving into the workings of GNNs, covering message passing, aggregation, transformation, transformation math, and attention mechanisms like GATv2Conv. Janani explores practical applications such as node classification, graph classification, and link prediction using datasets like Cora and PROTEINS. Hands-on exercises on Colab with PyTorch Geometric provide experience in setting up and training GNN models. Learn about mini-batching and neighborhood normalization to tackle graph data challenges. This course is ideal for researchers, data scientists, and anyone interested in deep learning or graph theory. Tune in to unlock new potentials in data analysis and modeling with GNNs.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
آموزش داده یابی یا همان Data Mining از متون
آموزش ساخت Feature ها از داده های عددی
Combining and Shaping Data
آموزش تفسیر داده ها بوسیله آمار توصیفی در زبان Python
Building Regression Models with scikit-learn
Data Engineering Pipeline Management with Apache Airflow
آموزش تحلیل داده ها بوسیله Qlik Sense
Understanding Statistical Models and Mathematical Models
Summarizing Data and Deducing Probabilities
آموزش ساخت و کار با مدل های Deep Learning بوسیله Apache MXNet
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها