وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Advanced Graph Neural Networks

سرفصل های دوره

Explore graph neural networks (GNNs) in depth. Instructor Janani Ravi begins by delving into the workings of GNNs, covering message passing, aggregation, transformation, transformation math, and attention mechanisms like GATv2Conv. Janani explores practical applications such as node classification, graph classification, and link prediction using datasets like Cora and PROTEINS. Hands-on exercises on Colab with PyTorch Geometric provide experience in setting up and training GNN models. Learn about mini-batching and neighborhood normalization to tackle graph data challenges. This course is ideal for researchers, data scientists, and anyone interested in deep learning or graph theory. Tune in to unlock new potentials in data analysis and modeling with GNNs.


01 - Introduction
  • 01 - Overview of graph neural networks
  • 02 - Prerequisites

  • 02 - 1. Overview of Graph Neural Networks
  • 01 - Message passing in GNNs
  • 02 - Aggregation and transformation math
  • 03 - Aggregation and transformation math in matrix form

  • 03 - 2. Node Classification with Graph Attention Networks
  • 01 - Introducing graph attention
  • 02 - Computing the attention coefficient
  • 03 - Including attention in GNN layers
  • 04 - Getting set up with Colab and the PyTorch Geometric library
  • 05 - Exploring the Cora dataset
  • 06 - Setting up the graph convolutional network
  • 07 - Training a graph convolutional network
  • 08 - Node classification using a graph attention network
  • 09 - Using the GATv2Conv layer for attention

  • 04 - 3. Graph Classification Using Graph Convolution
  • 01 - Understanding graph classification
  • 02 - Exploring the PROTEINS Dataset for graph classification
  • 03 - Minibatching graph data
  • 04 - Setting up a graph classification model
  • 05 - Training a GNN for graph classification
  • 06 - Eliminating neighborhood normalization and skip connections

  • 05 - 4. Link Prediction Using Graph Autoencoders
  • 01 - A quick overview of autoencoders
  • 02 - Introducing graph autoencoders
  • 03 - Splitting link prediction data
  • 04 - Understanding link splits
  • 05 - Designing an autoencoder for link prediction
  • 06 - Training the autoencoder

  • 06 - Conclusion
  • 01 - Summary and next steps
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 42017
    حجم: 233 مگابایت
    مدت زمان: 125 دقیقه
    تاریخ انتشار: ۲۱ آذر ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید