در حال حاضر محصولی در سبد خرید شما وجود ندارد.
Explore graph neural networks (GNNs) in depth. Instructor Janani Ravi begins by delving into the workings of GNNs, covering message passing, aggregation, transformation, transformation math, and attention mechanisms like GATv2Conv. Janani explores practical applications such as node classification, graph classification, and link prediction using datasets like Cora and PROTEINS. Hands-on exercises on Colab with PyTorch Geometric provide experience in setting up and training GNN models. Learn about mini-batching and neighborhood normalization to tackle graph data challenges. This course is ideal for researchers, data scientists, and anyone interested in deep learning or graph theory. Tune in to unlock new potentials in data analysis and modeling with GNNs.
در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.
Implementing Machine Learning Workflow with Weka
Solving Problems with Numerical Methods
GANs and Diffusion Models in Machine Learning
مفاهیم کلیدی یادگیری ماشینی
Implementing Machine Learning Workflow with RapidMiner
Style Transfer with PyTorch
Representing, Processing, and Preparing Data
Streamlining API Management Using Google Apigee
Solving Problems with Numerical Methods
مدیریت داده های Batch بوسیله Apache Spark بر روی Databricks
✨ تا ۷۰% تخفیف با شارژ کیف پول 🎁
مشاهده پلن ها