وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Advanced Computer Vision RepLearning, VAE, GAN, DEEPFAKE +

سرفصل های دوره

Advanced CV Deep Representation Learning, Transformer, Data Augmentation VAE, GAN, DEEPFAKE +More in Pytorch & Numpy


1 - Introduction
  • 1 - Course Overview
  • 2 - Applications
  • 3 - Google Colab Setup
  • 4 - Course Structure & Important Notes

  • 2 - Data Science in Numpy & Pytorch code Background
  • 1 - Quiz on Numpy.html
  • 5 - Data Science in Numpy Part1 Code
  • 5 - background-20210619T121800Z-001.zip
  • 6 - Data Science in Pytorch Part1 Code
  • 7 - Data Science in Pytorch Part 2Code

  • 3 - Pytorch AutoGrad
  • 8 - Pytorch AutoGrad
  • 8 - torch-grad.zip
  • 9 - Custom CNN in Pytorch
  • 9 - custom-cnn.zip

  • 4 - Faiss & Image Search Hands on Dont skip
  • 10 - Image SearchBasic & Cluster
  • 10 - image-search-20210630T095610Z-001.zip
  • 11 - Faiss Overview
  • 12 - Basic Image Search Code
  • 13 - Basic Image Search With pertained Resnet cifar10 dataset Code
  • 14 - Cluster Search Code

  • 5 - SOTA Data augmentation Hands On
  • 15 - Why Data Augmentation & History
  • 15 - augmentations-20210616T045647Z-001.zip
  • 16 - CutMix Paper Overview
  • 17 - Results of CutMix
  • 18 - CutMix Algorithm
  • 19 - CutMix Code
  • 20 - RandAugment
  • 21 - RandAugment Code

  • 6 - Softmax think out of the box Hands On
  • 22 - SoftMax Think out of the box
  • 22 - soft-softmax-20210616T050523Z-001.zip
  • 23 - Temperature Scaling & soft softmax code
  • 24 - Summery

  • 7 - Prelearing & UVR by Context Prediction Theory
  • 25 - Pretext Task
  • 26 - Overview of Unsupervised Visual Representation Learning by Context Prediction
  • 27 - Results of UVR by Context Prediction

  • 8 - JigSaw
  • 28 - Overview of Jigsaw
  • 29 - Network and Training process
  • 30 - Results of JigSaw

  • 9 - NonParametric Instance Level DiscriminationNPILD hands on
  • 31 - NonParametric Instancelevel Discrimination & Metric learning approach
  • 32 - NPILD Training Process
  • 33 - Non Parametric Softmax
  • 34 - Noise contrastive estimation NCE Part 1
  • 35 - FULL NCE Loss
  • 36 - NPILD Put it all together
  • 37 - NPILD Result
  • 38 - Non Parametric Softmax CrossEntropy Code

  • 10 - PEARL
  • 39 - SelfSupervised Learning of PretextInvariant Representations PEARL Part 1
  • 40 - PEARL Overview Part 2
  • 41 - PEARL Loss
  • 42 - PEARL Results

  • 11 - PEARL and NPILD code
  • 43 - NCE & Memory Bank Code
  • 43 - npild-pearl-20210616T045621Z-001.zip
  • 44 - Network and Training NPILD & Pearl Code

  • 12 - SimCLR
  • 45 - SIMCLR Overview
  • 46 - SIMCLR & Multiview Batch
  • 47 - SimCLR Algorithm and Loss
  • 48 - Training Details
  • 49 - Softmax is invariant under translation Important

  • 13 - SupCon & SimCLR Code
  • 50 - Supervised Contrastive Learning
  • 50 - selfsupcon-supcon-20210622T163534Z-001.zip
  • 51 - Mocking SimCLRCode
  • 52 - SimClr and Supervised Contrastive Learning Code

  • 14 - Practice Test Covering Upto DUVRL
  • 1 - Test Numpy skill.html
  • 2 - Test what you have learned.html

  • 15 - Few More ideas in Visual Representation Learning
  • 53 - Vissl & Albumentations
  • 54 - Tips From My Expeience
  • 55 - Few More ideas

  • 16 - DeepFakes & Beyond Second Part of the courseInProgress
  • 56 - Introduction to DeepFake & Beyond
  • 57 - Generative Vs Discriminative AI With VAE Example will be separate course
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 3367
    حجم: 1518 مگابایت
    مدت زمان: 219 دقیقه
    تاریخ انتشار: 29 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید