وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Advanced Algorithms Data

سرفصل های دوره
  • 1 - Chapter 1 Introducing data structures
  • 2 - Part 1. Improving over basic data structures
  • 3 - Chapter 1 Describing a data structure
  • 4 - Chapter 1 Packing your knapsack - Data structures meet the real world
  • 5 - Chapter 1 Algorithms to the rescue
  • 6 - Chapter 2 Improving priority queues - d-way heaps
  • 7 - Chapter 2 Solutions at hand - Keeping a sorted list
  • 8 - Chapter 2 Concrete data structures
  • 9 - Chapter 2 Priority, min-heap, and max-heap
  • 10 - Chapter 2 How to implement a heap
  • 11 - Chapter 2 PushDown
  • 12 - Chapter 2 Top
  • 13 - Chapter 2 Heapify
  • 14 - Chapter 2 Use case - Find the k largest elements
  • 15 - Chapter 2 More use cases
  • 16 - Chapter 2 Analysis of branching factor
  • 17 - Chapter 2 Performance analysis - Finding the best branching factor
  • 18 - Chapter 2 Interpreting results
  • 19 - Chapter 2 The mystery with heapify
  • 20 - Chapter 3 Treaps - Using randomization to balance binary search trees
  • 21 - Chapter 3 Treap
  • 22 - Chapter 3 A few design questions
  • 23 - Chapter 3 Delete
  • 24 - Chapter 3 Applications - Randomized treaps
  • 25 - Chapter 3 Performance analysis and profiling
  • 26 - Chapter 3 Profiling height
  • 27 - Chapter 3 Profiling memory usage
  • 28 - Chapter 4 Bloom filters - Reducing the memory for tracking content
  • 29 - Chapter 4 Alternatives to implementing a dictionary
  • 30 - Chapter 4 Concrete data structures
  • 31 - Chapter 4 Binary search tree - Every operation is logarithmic
  • 32 - Chapter 4 Implementation
  • 33 - Chapter 4 Constructor
  • 34 - Chapter 4 Applications
  • 35 - Chapter 4 Why Bloom filters work
  • 36 - Chapter 4 Performance analysis
  • 37 - Chapter 4 Explanation of the false-positive ratio formula
  • 38 - Chapter 4 Improved variants
  • 39 - Chapter 5 Disjoint sets - Sub-linear time processing
  • 40 - Chapter 5 Reasoning on solutions
  • 41 - Chapter 5 Naive solution
  • 42 - Chapter 5 Using a tree-like structure
  • 43 - Chapter 5 Heuristics to improve the running time
  • 44 - Chapter 5 Applications
  • 45 - Chapter 6 Trie, radix trie - Efficient string search
  • 46 - Chapter 6 Trie
  • 47 - Chapter 6 Search
  • 48 - Chapter 6 Insert
  • 49 - Chapter 6 Keys matching a prefix
  • 50 - Chapter 6 Radix tries
  • 51 - Chapter 6 Search
  • 52 - Chapter 6 Applications
  • 53 - Chapter 6 String sorting
  • 54 - Chapter 7 Use case - LRU cache
  • 55 - Chapter 7 First attempt - Remembering values
  • 56 - Chapter 7 Handling asynchronous calls
  • 57 - Chapter 7 Memory is not enough (literally)
  • 58 - Chapter 7 Getting rid of stale data - LRU cache
  • 59 - Chapter 7 Temporal ordering
  • 60 - Chapter 7 When fresher data is more valuable - LFU
  • 61 - Chapter 7 How to use cache is just as important
  • 62 - Chapter 7 Solving concurrency (in Java)
  • 63 - Chapter 7 Read locks
  • 64 - Part 2. Multidimensional queries
  • 65 - Chapter 8 Nearest neighbors search
  • 66 - Chapter 8 Simplifying things to get a hint
  • 67 - Chapter 8 Moving to k-dimensional spaces
  • 68 - Chapter 9 K-d trees - Multidimensional data indexing
  • 69 - Chapter 9 Constructing the BST
  • 70 - Chapter 9 Methods
  • 71 - Chapter 9 Balanced tree
  • 72 - Chapter 9 Remove
  • 73 - Chapter 9 Nearest neighbor
  • 74 - Chapter 9 Region search
  • 75 - Chapter 10 Similarity Search Trees - Approximate nearest neighbors search for image retrieval
  • 76 - Chapter 10 R-tree
  • 77 - Chapter 10 Inserting points in an R-tree
  • 78 - Chapter 10 Similarity search tree
  • 79 - Chapter 10 SS-tree search
  • 80 - Chapter 10 Insert
  • 81 - Chapter 10 Insertion - Split nodes
  • 82 - Chapter 10 Delete
  • 83 - Chapter 10 Similarity Search
  • 84 - Chapter 10 Approximated similarity search
  • 85 - Chapter 10 SS+-tree
  • 86 - Chapter 10 Reducing overlap
  • 87 - Chapter 11 Applications of nearest neighbor search
  • 88 - Chapter 11.Centralized application
  • 89 - Chapter 11 Moving to a distributed application
  • 90 - Chapter 11 Other applications
  • 91 - Chapter 11 Multidimensional DB queries optimization
  • 92 - Chapter 12 Clustering
  • 93 - Chapter 12 Types of learning
  • 94 - Chapter 12 K-means
  • 95 - Chapter 12 The curse of dimensionality strikes again
  • 96 - Chapter 12 Boosting k-means with k-d trees
  • 97 - Chapter 12 DBSCAN
  • 98 - Chapter 12 From definitions to an algorithm
  • 99 - Chapter 12 And finally, an implementation
  • 100 - Chapter 12 OPTICS
  • 101 - Chapter 12 From reachability distance to clustering
  • 102 - Chapter 12 Hierarchical clustering
  • 103 - Chapter 12. Evaluating clustering results - Evaluation metrics
  • 104 - Chapter 13 Parallel clustering - MapReduce and canopy clustering
  • 105 - Chapter 13 Canopy clustering
  • 106 - Chapter 13 MapReduce
  • 107 - Chapter 13 First map, then reduce
  • 108 - Chapter 13 MapReduce k-means
  • 109 - Chapter 13 Parallelizing canopy clustering
  • 110 - Chapter 13 MapReduce canopy clustering
  • 111 - Chapter 13 MapReduce DBSCAN - Part 1
  • 112 - Chapter 13 MapReduce DBSCAN - Part 2
  • 113 - Part 3. Planar graphs and minimum crossing number
  • 114 - Chapter 14 An introduction to graphs - Finding paths of minimum distance
  • 115 - Chapter 14 Implementing graphs
  • 116 - Chapter 14 Graph properties
  • 117 - Chapter 14 Graph traversal - BFS and DFS
  • 118 - Chapter 14 Reconstructing the path to target
  • 119 - Chapter 14 Shortest path in weighted graphs - Dijkstra
  • 120 - Chapter 14 Beyond Dijkstras algorithm - A
  • 121 - Chapter 14 How good is A search
  • 122 - Chapter 14 Heuristics as a way to balance real-time data
  • 123 - Chapter 15 Graph embeddings and planarity - Drawing graphs with minimal edge intersections
  • 124 - Chapter 15 Some basic definitions
  • 125 - Chapter 15 Planar graphs
  • 126 - Chapter 15 Planarity testing
  • 127 - Chapter 15 Improving performance
  • 128 - Chapter 15 Non-planar graphs
  • 129 - Chapter 15 Rectilinear crossing number
  • 130 - Chapter 15 Edge intersections
  • 131 - Chapter 15 Polylines
  • 132 - Chapter 15 Intersections between quadratic Bezier curves
  • 133 - Chapter 16 Gradient descent - Optimization problems (not just) on graphs
  • 134 - Chapter 16 Did you just say heuristics
  • 135 - Chapter 16 How optimization works
  • 136 - Chapter 16 Gradient descent
  • 137 - Chapter 16 When is gradient descent appliable
  • 138 - Chapter 16 Applications of gradient descent
  • 139 - Chapter 16 Gradient descent for graph embedding
  • 140 - Chapter 17 Simulated annealing - Optimization beyond local minima
  • 141 - Chapter 17 Sometimes you need to climb up to get to the bottom
  • 142 - Chapter 17 Why simulated annealing works
  • 143 - Chapter 17 Short-range vs long-range transitions
  • 144 - Chapter 17 Simulated annealing + traveling salesman
  • 145 - Chapter 17 Exact vs approximated solutions
  • 146 - Chapter 17 State transitions
  • 147 - Chapter 17 Simulated annealing and graph embedding
  • 148 - Chapter 17 Force-directed drawing
  • 149 - Chapter 18 Genetic algorithms - Biologically inspired, fast-converging optimization
  • 150 - Chapter 18 Inspired by nature
  • 151 - Chapter 18 Chromosomes
  • 152 - Chapter 18 Natural selection
  • 153 - Chapter 18 Selecting individuals for mating
  • 154 - Chapter 18 Crossover
  • 155 - Chapter 18 The genetic algorithm template
  • 156 - Chapter 18 TSP
  • 157 - Chapter 18 Results and parameters tuning
  • 158 - Chapter 18 Minimum vertex cover
  • 159 - Chapter 18 Other applications of the genetic algorithm
  • 160 - Chapter 18 Beyond genetic algorithms
  • 161 - Appendix A. A quick guide to pseudo-code
  • 162 - Appendix A Conditional instructions
  • 163 - Appendix A Blocks and indent
  • 164 - Appendix B. Big-O notation
  • 165 - Appendix B Notation
  • 166 - Appendix C. Core data structures
  • 167 - Appendix C Tree
  • 168 - Appendix C Hash table
  • 169 - Appendix D. Containers as priority queues
  • 170 - Appendix E. Recursion
  • 171 - Appendix E Tail recursion
  • 172 - Appendix F. Classification problems and randomnized algorithm metrics
  • 173 - Appendix F Classification metrics
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 12041
    حجم: 56637 مگابایت
    مدت زمان: 1419 دقیقه
    تاریخ انتشار: ۲۸ اردیبهشت ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید