وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python for Finance and Data Science

سرفصل های دوره

Learn Python Programming and apply Financial Data Science to REAL data - from Beginner to Professional


1 - Introduction
  • 1 - What does this course cover
  • 2 - Disclaimer MUST WATCH
  • 3 - How to get the most of this course
  • 4 - Any questions or problems Reach out

  • 2 - Installation and Jupyter Notebook Basics
  • 5 - Download Anaconda Set Up Jupyter Notebook
  • 6 - Jupyter Notebook Basics

  • 3 - Python Fundamentals
  • 7 - Variables Single Datatypes
  • 8 - What you should NEVER do
  • 9 - Typecasting User Input
  • 10 - Practice Time
  • 11 - Arithmetic Operators
  • 12 - Comparison Operators Logical Operators
  • 13 - Indentations IfStatements
  • 14 - Practice Time
  • 15 - Lists as objects with methods in Python
  • 16 - List Slicing Indexing
  • 17 - Difference between lists tuples
  • 18 - Dictionaries
  • 19 - For loops
  • 20 - Combining lists loops List comprehension
  • 21 - While loop
  • 22 - Practice Time
  • 23 - Practice your knowledge with a common Interview question
  • 24 - Functions

  • 4 - Fundamentals of Pandas
  • 25 - Setting up a DataFrame and DataFrame properties
  • 26 - Adding columns and using dictionaries for DataFrame initialization
  • 27 - New columns based on calculations
  • 28 - Data Selection with iloc
  • 29 - Data Selection with loc
  • 30 - Data Filtering with Boolean Masks and Boolean Indexing

  • 5 - Applied Financial Data Analysis
  • 31 - Pulling stock prices and OHLC data
  • 32 - Quick Recap on what we did in the last chapter
  • 33 - Return calculation with shift and pctchange
  • 34 - Important functions diff dropna rolling
  • 35 - Very important argument axis0 or axis1
  • 36 - nlargest and nsmallest
  • 37 - Bringing together Dataframes Concat
  • 38 - Combining Time Series and OHLC in general
  • 39 - Resampling Data
  • 40 - Resampling OHLC Data
  • 41 - Plotting in Pandas
  • 42 - Iterating over a dataframe Iterrows
  • 43 - Performance Comparison Iterrows vs Vectorization
  • 44 - Return calculation deep dive
  • 45 - Practice Task Plot the yearly returns of the SP500
  • 46 - Solution to the Practice Task Plot yearly returns of the SP500

  • 6 - Portfolio Analysis and Portfolio Management with Python
  • 47 - Portfolio Analysis Introduction
  • 48 - Variance Standarddeviation Covariance and Correlation
  • 49 - Portfolio Return and Risk
  • 50 - Portfolio Expected Return and Portfolio Risk using Python
  • 51 - Use the Dot Product to calculate Portfolio Return and Portfolio Risk
  • 52 - Application to real data Portfolio of Microsoft Coca Cola and Tesla
  • 52 - portfolio-analysis.zip
  • 53 - Efficient Frontier Minimum Variance Portfolio and dominant Portfolios

  • 7 - Introduction to Backtesting Trading Strategies
  • 54 - Introduction and the Strategy
  • 55 - Coding the Trading Strategy iterative approach
  • 55 - backtest-iteratively.zip
  • 56 - Vectorizing the Backtest
  • 56 - backtest-vectorized.zip

  • 8 - Project I Momentum Trading Strategies
  • 57 - Crosssectional Momentum Part I Survivorship Bias Handling
  • 58 - Crosssectional Momentum Part II Constructing and Backtesting
  • 58 - momentum-s-p500-full.zip
  • 59 - TimeSeries Momentum

  • 9 - Project II Backtesting JPMorgans Volatility Index VIX based Strategy
  • 60 - Backtesting JPMorgans Volatility Index VIX based Strategy
  • 60 - jpm.zip

  • 10 - Project III Stock Market Analysis Interactive Dashboards with Streamlit
  • 61 - Brief Intro to Streamlit
  • 62 - Streamlit Portfolio Analysis Dashboard
  • 63 - Streamlit Dashboard showing the Top and Worst SP500 Index performers
  • 63 - equity-index-streamlit.zip

  • 11 - Project IV Machine Learning applied on Stock Data
  • 64 - A Machine Learning Model which potentially outperformed the SP500
  • 64 - ml-logit-strategy.zip
  • 65 - Least Squares Moving Average Trading Strategy
  • 65 - lsma.zip

  • 12 - Project V An advanced guide to Backtesting and Optimization on over 500 Stocks
  • 66 - Iterative Approach
  • 66 - backtest-adv-iterative.zip
  • 67 - Vectorized Approach
  • 68 - Results Analysis

  • 13 - Project VI Optimizing a Portfolio based on the Sharpe Ratio
  • 69 - Recap on Matrix Operations Expected return and Portfolio Risk
  • 70 - Optimization of Portfolio weights

  • 14 - Extra Chapter Pandas SQL
  • 71 - The mighty Intersection between Pandas and SQL
  • 72 - How to update an SQL Database with Pandas and SQL
  • 73 - Build your own Finance DB using Pandas SQL
  • 74 - Build a simple Stock recommendation System with your Finance DB
  • 74 - MACD indicator explained.txt
  • 75 - Build an Intraday Stock Price Database with Python and SQL

  • 15 - What I would like to give you on your way Thank you
  • 76 - Thank you and something to take along
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 17202
    حجم: 3490 مگابایت
    مدت زمان: 530 دقیقه
    تاریخ انتشار: ۱۲ مرداد ۱۴۰۲
    دیگر آموزش های این مدرس
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید