وب سایت تخصصی شرکت فرین
دسته بندی دوره ها
1

Become a Data Scientist: SQL, Tableau, ML & DL [4-in-1]

سرفصل های دوره

4-in-1 Bundle covering the 4 essential topics for a data scientist - SQL, Tableau, Machine & Deep Learning using Python


1. Introduction
  • 1. Introduction

  • 2. Installation and getting started
  • 1. Installing PostgreSQL and pgAdmin in your PC
  • 2. This is a milestone!
  • 3. If pgAdmin is not opening .html
  • 4. Course Resources.html

  • 3. Case Study Demo
  • 1. Case Study Part 1 - Business problems
  • 2. Case Study Part 2 - How SQL is Used

  • 4. Fundamental SQL statements
  • 1. CREATE
  • 2. INSERT
  • 3. Import data from File
  • 4. SELECT statement
  • 5. SELECT DISTINCT
  • 6. WHERE
  • 7. Logical Operators
  • 8. UPDATE
  • 9. DELETE
  • 10. ALTER Part - 1
  • 11. ALTER Part - 2

  • 5. Restore and Back-up
  • 1. Restore and Back-up
  • 2. Debugging restoration issues
  • 3. Creating DB using CSV files
  • 4. Debugging summary and Code for CSV files.html

  • 6. Selection commands Filtering
  • 1. IN
  • 2. BETWEEN
  • 3. LIKE

  • 7. Selection commands Ordering
  • 1. Side Lecture Commenting in SQL
  • 2. ORDER BY
  • 3. LIMIT

  • 8. Alias
  • 1. AS

  • 9. Aggregate Commands
  • 1. COUNT
  • 2. SUM
  • 3. AVERAGE
  • 4. MIN & MAX

  • 10. Group By Commands
  • 1. GROUP BY
  • 2. HAVING

  • 11. Conditional Statement
  • 1. CASE WHEN

  • 12. JOINS
  • 1. Introduction to Joins
  • 2. Concepts of Joining and Combining Data
  • 3. Preparing the data
  • 4. Inner Join
  • 5. Left Join
  • 6. Right Join
  • 7. Full Outer Join
  • 8. Cross Join
  • 9. Intersect and Intersect ALL
  • 10. Except
  • 11. Union

  • 13. Subqueries
  • 1. Subquery in WHERE clause
  • 2. Subquery in FROM clause
  • 3. Subquery in SELECT clause

  • 14. Views and Indexes
  • 1. VIEWS
  • 2. INDEX

  • 15. String Functions
  • 1. LENGTH
  • 2. UPPER LOWER
  • 3. REPLACE
  • 4. TRIM, LTRIM, RTRIM
  • 5. CONCATENATION
  • 6. SUBSTRING
  • 7. LIST AGGREGATION

  • 16. Mathematical Functions
  • 1. CEIL & FLOOR
  • 2. RANDOM
  • 3. SETSEED
  • 4. ROUND
  • 5. POWER

  • 17. Date-Time Functions
  • 1. CURRENT DATE & TIME
  • 2. AGE
  • 3. EXTRACT

  • 18. PATTERN (STRING) MATCHING
  • 1. PATTERN MATCHING BASICS
  • 2. ADVANCE PATTERN MATCHING - Part 1
  • 3. ADVANCE PATTERN MATCHING - Part 2

  • 19. Window Functions
  • 1. Introduction to Window functions
  • 2. Introduction to Row number
  • 3. Implementing Row number in SQL
  • 4. RANK and DENSERANK
  • 5. NTILE function
  • 6. AVERAGE function
  • 7. COUNT
  • 8. SUM TOTAL
  • 9. RUNNING TOTAL
  • 10. LAG and LEAD

  • 20. COALESCE function
  • 1. COALESCE function

  • 21. Data Type conversion functions
  • 1. Converting Numbers Date to String
  • 2. Converting String to Numbers Date

  • 22. User Access Control Functions
  • 1. User Access Control - Part 1
  • 2. User Access Control - Part 2

  • 23. Nail that Interview!
  • 1. Tablespace
  • 2. PRIMARY KEY & FOREIGN KEY
  • 3. ACID compliance
  • 4. Truncate

  • 24. TABLEAU
  • 1. Why Tableau
  • 2. Tableau Products

  • 25. Installing and getting started
  • 1. Installing Tableau desktop and Public
  • 2. About the data
  • 3. Connecting to data
  • 4. Live vs Extract

  • 26. Combining data to create Data model
  • 1. Combining data from multiple tables
  • 2. Relationships in Tableau
  • 3. Joins in Tableau
  • 4. Types of Joins in Tableau
  • 5. Union in Tableau
  • 6. Physical Logical layer and Data models
  • 7. The visualization screen - Sheet

  • 27. Data categorization in Tableau
  • 1. Types of Data - Dimensions and Measures
  • 2. Types of Data - Discreet and Continuous
  • 3. Changing Data type in Tableau

  • 28. Most used charts
  • 1. Bar charts
  • 2. Line charts
  • 3. Scatterplots

  • 29. Customizing charts using Marks shelf
  • 1. Marks cards
  • 2. Dropping Dimensions and Measures on marks card
  • 3. Dropping Dimensions on Line chart
  • 4. Adding marks in scatterplot

  • 30. Other important charts
  • 1. Text tables, heat map and highlight tables
  • 2. Pie charts
  • 3. Area charts
  • 4. Creating custom hierarchy
  • 5. Tree map
  • 6. Dual combination charts
  • 7. Creating Bins
  • 8. Histogram

  • 31. Grouping and Filtering data
  • 1. Grouping Data
  • 2. Filtering data
  • 3. Dimension filters
  • 4. Measure filters
  • 5. Date-Time filters
  • 6. Filter options
  • 7. Types of filters and order of operation
  • 8. Customizing visual filters
  • 9. Sorting options

  • 32. Map charts in Tableau
  • 1. How to make a map chart
  • 2. Considerations before making a Map chart
  • 3. Marks card for customizing maps
  • 4. Customizing maps using map menu
  • 5. Layers in a Map
  • 6. Visual toolbar on a map
  • 7. Custom background images
  • 8. Territories in maps
  • 9. Data blending for missing geocoding

  • 33. Calculation and Analytics
  • 1. Calculated fields in Tableau
  • 2. Functions in Tableau
  • 3. Table calculations theory
  • 4. Table calculations in Tableau
  • 5. Understanding LOD expressions
  • 6. LOD expressions examples
  • 7. Analytics pane

  • 34. Sets and Parameters
  • 1. Understanding sets in Tableau
  • 2. Creating Sets in Tableau
  • 3. Parameters

  • 35. Dashboard and Story
  • 1. Dashboard part -1
  • 2. Dashboard part - 2
  • 3. Story

  • 36. Appendix
  • 1. Connecting to SQL data source
  • 2. Connecting to cloud storage services

  • 37. Machine Learning with Python
  • 1. Introduction

  • 38. Setting up Python and Jupyter notebook
  • 1. Installing Python and Anaconda
  • 2. Opening Jupyter Notebook
  • 3. Introduction to Jupyter
  • 4. Arithmetic operators in Python Python Basics
  • 5. Strings in Python Python Basics
  • 6. Lists, Tuples and Directories Python Basics
  • 7. Working with Numpy Library of Python
  • 8. Working with Pandas Library of Python
  • 9. Working with Seaborn Library of Python

  • 39. Basics of statistics
  • 1. Types of Data
  • 2. Types of Statistics
  • 3. Describing data Graphically
  • 4. Measures of Centers
  • 5. Measures of Dispersion

  • 40. Introduction to Machine Learning
  • 1. Introduction to Machine Learning
  • 2. Building a Machine Learning Model

  • 41. Data Preprocessing
  • 1. Gathering Business Knowledge
  • 2. Data Exploration
  • 3. The Dataset and the Data Dictionary
  • 4. Importing Data in Python
  • 5. Univariate analysis and EDD
  • 6. EDD in Python
  • 7. Outlier Treatment
  • 8. Outlier Treatment in Python
  • 9. Missing Value Imputation
  • 10. Missing Value Imputation in Python
  • 11. Seasonality in Data
  • 12. Bi-variate analysis and Variable transformation
  • 13. Variable transformation and deletion in Python
  • 14. Non-usable variables
  • 15. Dummy variable creation Handling qualitative data
  • 16. Dummy variable creation in Python
  • 17. Correlation Analysis
  • 18. Correlation Analysis in Python

  • 42. Linear Regression
  • 1. The Problem Statement
  • 2. Basic Equations and Ordinary Least Squares (OLS) method
  • 3. Assessing accuracy of predicted coefficients
  • 4. Assessing Model Accuracy RSE and R squared
  • 5. Simple Linear Regression in Python
  • 6. Multiple Linear Regression
  • 7. The F - statistic
  • 8. Interpreting results of Categorical variables
  • 9. Multiple Linear Regression in Python
  • 10. Test-train split
  • 11. Bias Variance trade-off
  • 12. Test train split in Python
  • 13. Regression models other than OLS
  • 14. Subset selection techniques
  • 15. Shrinkage methods Ridge and Lasso
  • 16. Ridge regression and Lasso in Python
  • 17. Heteroscedasticity

  • 43. Introduction to the classification Models
  • 1. Three classification models and Data set
  • 2. Importing the data into Python
  • 3. The problem statements
  • 4. Why cant we use Linear Regression

  • 44. Logistic Regression
  • 1. Logistic Regression
  • 2. Training a Simple Logistic Model in Python
  • 3. Result of Simple Logistic Regression
  • 4. Logistic with multiple predictors
  • 5. Training multiple predictor Logistic model in Python
  • 6. Confusion Matrix
  • 7. Creating Confusion Matrix in Python
  • 8. Evaluating performance of model
  • 9. Evaluating model performance in Python

  • 45. Linear Discriminant Analysis (LDA)
  • 1. Linear Discriminant Analysis
  • 2. LDA in Python

  • 46. K Nearest neighbors classifier
  • 1. Test-Train Split
  • 2. Test-Train Split in Python
  • 3. K-Nearest Neighbors classifier
  • 4. K-Nearest Neighbors in Python Part 1
  • 5. K-Nearest Neighbors in Python Part 2

  • 47. Comparing results from 3 models
  • 1. Understanding the results of classification models
  • 2. Summary of the three models

  • 48. Simple Decision Trees
  • 1. Introduction to Decision trees
  • 2. Basics of Decision Trees
  • 3. Understanding a Regression Tree
  • 4. The stopping criteria for controlling tree growth
  • 5. Importing the Data set into Python
  • 6. Missing value treatment in Python
  • 7. Dummy Variable Creation in Python
  • 8. Dependent- Independent Data split in Python
  • 9. Test-Train split in Python
  • 10. Creating Decision tree in Python
  • 11. Evaluating model performance in Python
  • 12. Plotting decision tree in Python
  • 13. Pruning a tree
  • 14. Pruning a tree in Python

  • 49. Simple Classification Trees
  • 1. Classification tree
  • 2. The Data set for Classification problem
  • 3. Classification tree in Python Preprocessing
  • 4. Classification tree in Python Training
  • 5. Advantages and Disadvantages of Decision Trees

  • 50. Ensemble technique 1 - Bagging
  • 1. Ensemble technique 1 - Bagging
  • 2. Ensemble technique 1 - Bagging in Python

  • 51. Ensemble technique 2 - Random Forests
  • 1. Ensemble technique 2 - Random Forests
  • 2. Ensemble technique 2 - Random Forests in Python
  • 3. Using Grid Search in Python

  • 52. Ensemble technique 3 - Boosting
  • 1. Boosting
  • 2. Ensemble technique 3a - Boosting in Python
  • 3. Ensemble technique 3b - AdaBoost in Python
  • 4. Ensemble technique 3c - XGBoost in Python

  • 53. Introduction - Deep Learning
  • 1. Introduction to Neural Networks and Course flow
  • 2. Perceptron
  • 3. Activation Functions
  • 4. Creating Perceptron model in Python - Part 1
  • 5. Creating Perceptron model in Python - Part 2

  • 54. Neural Networks - Stacking cells to create network
  • 1. Basic Terminologies
  • 2. Gradient Descent
  • 3. Back Propagation Part - 1
  • 4. Back Propagation - Part 2
  • 5. Some Important Concepts
  • 6. Hyperparameter

  • 55. ANN in Python
  • 1. Keras and Tensorflow
  • 2. Installing Tensorflow and Keras
  • 3. Dataset for classification
  • 4. Normalization and Test-Train split
  • 5. Different ways to create ANN using Keras
  • 6. Building the Neural Network using Keras
  • 7. Compiling and Training the Neural Network model
  • 8. Evaluating performance and Predicting using Keras
  • 9. Building Neural Network for Regression Problem - Part 1
  • 10. Building Neural Network for Regression Problem - Part 2
  • 11. Building Neural Network for Regression Problem - Part 3
  • 12. Using Functional API for complex architectures
  • 13. Saving - Restoring Models and Using Callbacks - Part 1
  • 14. Saving - Restoring Models and Using Callbacks - Part 2
  • 15. Hyperparameter Tuning

  • 56. CNN Basics
  • 1. CNN Introduction
  • 2. Stride
  • 3. Padding
  • 4. Filters and feature map
  • 5. Channels
  • 6. Pooling Layer

  • 57. Creating CNN model in Python
  • 1. CNN model in Python - Preprocessing
  • 2. CNN model in Python - structure and Compile
  • 3. CNN model in Python - Training and results
  • 4. Comparison - Pooling vs Without Pooling in Python

  • 58. Project Creating CNN model from scratch in Python
  • 1. Project - Introduction
  • 2. Data for the project.html
  • 3. Project - Data Preprocessing in Python
  • 4. Project - Training CNN model in Python
  • 5. Project in Python - model results

  • 59. Project Data Augmentation for avoiding overfitting
  • 1. Project - Data Augmentation Preprocessing
  • 2. Project - Data Augmentation Training and Results

  • 60. Transfer Learning Basics
  • 1. ILSVRC
  • 2. LeNET
  • 3. VGG16NET
  • 4. GoogLeNet
  • 5. Transfer Learning
  • 6. Project - Transfer Learning - VGG16 - Part - 1
  • 7. Project - Transfer Learning - VGG16 - Part - 2
  • 8. Project - Transfer Learning - VGG16 - Part - 3
  • 9. The final milestone!

  • 61. Congratulations & about your certificate
  • 1. Bonus Lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 13291
    حجم: 15396 مگابایت
    مدت زمان: 2178 دقیقه
    تاریخ انتشار: ۲۰ خرداد ۱۴۰۲
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید