وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Become a Data Scientist: SQL, Tableau, ML & DL [4-in-1]

سرفصل های دوره

4-in-1 Bundle covering the 4 essential topics for a data scientist - SQL, Tableau, Machine & Deep Learning using Python


1. Introduction
  • 1. Introduction

  • 2. Installation and getting started
  • 1. Installing PostgreSQL and pgAdmin in your PC
  • 2. This is a milestone!
  • 3. If pgAdmin is not opening .html
  • 4. Course Resources.html

  • 3. Case Study Demo
  • 1. Case Study Part 1 - Business problems
  • 2. Case Study Part 2 - How SQL is Used

  • 4. Fundamental SQL statements
  • 1. CREATE
  • 2. INSERT
  • 3. Import data from File
  • 4. SELECT statement
  • 5. SELECT DISTINCT
  • 6. WHERE
  • 7. Logical Operators
  • 8. UPDATE
  • 9. DELETE
  • 10. ALTER Part - 1
  • 11. ALTER Part - 2

  • 5. Restore and Back-up
  • 1. Restore and Back-up
  • 2. Debugging restoration issues
  • 3. Creating DB using CSV files
  • 4. Debugging summary and Code for CSV files.html

  • 6. Selection commands Filtering
  • 1. IN
  • 2. BETWEEN
  • 3. LIKE

  • 7. Selection commands Ordering
  • 1. Side Lecture Commenting in SQL
  • 2. ORDER BY
  • 3. LIMIT

  • 8. Alias
  • 1. AS

  • 9. Aggregate Commands
  • 1. COUNT
  • 2. SUM
  • 3. AVERAGE
  • 4. MIN & MAX

  • 10. Group By Commands
  • 1. GROUP BY
  • 2. HAVING

  • 11. Conditional Statement
  • 1. CASE WHEN

  • 12. JOINS
  • 1. Introduction to Joins
  • 2. Concepts of Joining and Combining Data
  • 3. Preparing the data
  • 4. Inner Join
  • 5. Left Join
  • 6. Right Join
  • 7. Full Outer Join
  • 8. Cross Join
  • 9. Intersect and Intersect ALL
  • 10. Except
  • 11. Union

  • 13. Subqueries
  • 1. Subquery in WHERE clause
  • 2. Subquery in FROM clause
  • 3. Subquery in SELECT clause

  • 14. Views and Indexes
  • 1. VIEWS
  • 2. INDEX

  • 15. String Functions
  • 1. LENGTH
  • 2. UPPER LOWER
  • 3. REPLACE
  • 4. TRIM, LTRIM, RTRIM
  • 5. CONCATENATION
  • 6. SUBSTRING
  • 7. LIST AGGREGATION

  • 16. Mathematical Functions
  • 1. CEIL & FLOOR
  • 2. RANDOM
  • 3. SETSEED
  • 4. ROUND
  • 5. POWER

  • 17. Date-Time Functions
  • 1. CURRENT DATE & TIME
  • 2. AGE
  • 3. EXTRACT

  • 18. PATTERN (STRING) MATCHING
  • 1. PATTERN MATCHING BASICS
  • 2. ADVANCE PATTERN MATCHING - Part 1
  • 3. ADVANCE PATTERN MATCHING - Part 2

  • 19. Window Functions
  • 1. Introduction to Window functions
  • 2. Introduction to Row number
  • 3. Implementing Row number in SQL
  • 4. RANK and DENSERANK
  • 5. NTILE function
  • 6. AVERAGE function
  • 7. COUNT
  • 8. SUM TOTAL
  • 9. RUNNING TOTAL
  • 10. LAG and LEAD

  • 20. COALESCE function
  • 1. COALESCE function

  • 21. Data Type conversion functions
  • 1. Converting Numbers Date to String
  • 2. Converting String to Numbers Date

  • 22. User Access Control Functions
  • 1. User Access Control - Part 1
  • 2. User Access Control - Part 2

  • 23. Nail that Interview!
  • 1. Tablespace
  • 2. PRIMARY KEY & FOREIGN KEY
  • 3. ACID compliance
  • 4. Truncate

  • 24. TABLEAU
  • 1. Why Tableau
  • 2. Tableau Products

  • 25. Installing and getting started
  • 1. Installing Tableau desktop and Public
  • 2. About the data
  • 3. Connecting to data
  • 4. Live vs Extract

  • 26. Combining data to create Data model
  • 1. Combining data from multiple tables
  • 2. Relationships in Tableau
  • 3. Joins in Tableau
  • 4. Types of Joins in Tableau
  • 5. Union in Tableau
  • 6. Physical Logical layer and Data models
  • 7. The visualization screen - Sheet

  • 27. Data categorization in Tableau
  • 1. Types of Data - Dimensions and Measures
  • 2. Types of Data - Discreet and Continuous
  • 3. Changing Data type in Tableau

  • 28. Most used charts
  • 1. Bar charts
  • 2. Line charts
  • 3. Scatterplots

  • 29. Customizing charts using Marks shelf
  • 1. Marks cards
  • 2. Dropping Dimensions and Measures on marks card
  • 3. Dropping Dimensions on Line chart
  • 4. Adding marks in scatterplot

  • 30. Other important charts
  • 1. Text tables, heat map and highlight tables
  • 2. Pie charts
  • 3. Area charts
  • 4. Creating custom hierarchy
  • 5. Tree map
  • 6. Dual combination charts
  • 7. Creating Bins
  • 8. Histogram

  • 31. Grouping and Filtering data
  • 1. Grouping Data
  • 2. Filtering data
  • 3. Dimension filters
  • 4. Measure filters
  • 5. Date-Time filters
  • 6. Filter options
  • 7. Types of filters and order of operation
  • 8. Customizing visual filters
  • 9. Sorting options

  • 32. Map charts in Tableau
  • 1. How to make a map chart
  • 2. Considerations before making a Map chart
  • 3. Marks card for customizing maps
  • 4. Customizing maps using map menu
  • 5. Layers in a Map
  • 6. Visual toolbar on a map
  • 7. Custom background images
  • 8. Territories in maps
  • 9. Data blending for missing geocoding

  • 33. Calculation and Analytics
  • 1. Calculated fields in Tableau
  • 2. Functions in Tableau
  • 3. Table calculations theory
  • 4. Table calculations in Tableau
  • 5. Understanding LOD expressions
  • 6. LOD expressions examples
  • 7. Analytics pane

  • 34. Sets and Parameters
  • 1. Understanding sets in Tableau
  • 2. Creating Sets in Tableau
  • 3. Parameters

  • 35. Dashboard and Story
  • 1. Dashboard part -1
  • 2. Dashboard part - 2
  • 3. Story

  • 36. Appendix
  • 1. Connecting to SQL data source
  • 2. Connecting to cloud storage services

  • 37. Machine Learning with Python
  • 1. Introduction

  • 38. Setting up Python and Jupyter notebook
  • 1. Installing Python and Anaconda
  • 2. Opening Jupyter Notebook
  • 3. Introduction to Jupyter
  • 4. Arithmetic operators in Python Python Basics
  • 5. Strings in Python Python Basics
  • 6. Lists, Tuples and Directories Python Basics
  • 7. Working with Numpy Library of Python
  • 8. Working with Pandas Library of Python
  • 9. Working with Seaborn Library of Python

  • 39. Basics of statistics
  • 1. Types of Data
  • 2. Types of Statistics
  • 3. Describing data Graphically
  • 4. Measures of Centers
  • 5. Measures of Dispersion

  • 40. Introduction to Machine Learning
  • 1. Introduction to Machine Learning
  • 2. Building a Machine Learning Model

  • 41. Data Preprocessing
  • 1. Gathering Business Knowledge
  • 2. Data Exploration
  • 3. The Dataset and the Data Dictionary
  • 4. Importing Data in Python
  • 5. Univariate analysis and EDD
  • 6. EDD in Python
  • 7. Outlier Treatment
  • 8. Outlier Treatment in Python
  • 9. Missing Value Imputation
  • 10. Missing Value Imputation in Python
  • 11. Seasonality in Data
  • 12. Bi-variate analysis and Variable transformation
  • 13. Variable transformation and deletion in Python
  • 14. Non-usable variables
  • 15. Dummy variable creation Handling qualitative data
  • 16. Dummy variable creation in Python
  • 17. Correlation Analysis
  • 18. Correlation Analysis in Python

  • 42. Linear Regression
  • 1. The Problem Statement
  • 2. Basic Equations and Ordinary Least Squares (OLS) method
  • 3. Assessing accuracy of predicted coefficients
  • 4. Assessing Model Accuracy RSE and R squared
  • 5. Simple Linear Regression in Python
  • 6. Multiple Linear Regression
  • 7. The F - statistic
  • 8. Interpreting results of Categorical variables
  • 9. Multiple Linear Regression in Python
  • 10. Test-train split
  • 11. Bias Variance trade-off
  • 12. Test train split in Python
  • 13. Regression models other than OLS
  • 14. Subset selection techniques
  • 15. Shrinkage methods Ridge and Lasso
  • 16. Ridge regression and Lasso in Python
  • 17. Heteroscedasticity

  • 43. Introduction to the classification Models
  • 1. Three classification models and Data set
  • 2. Importing the data into Python
  • 3. The problem statements
  • 4. Why cant we use Linear Regression

  • 44. Logistic Regression
  • 1. Logistic Regression
  • 2. Training a Simple Logistic Model in Python
  • 3. Result of Simple Logistic Regression
  • 4. Logistic with multiple predictors
  • 5. Training multiple predictor Logistic model in Python
  • 6. Confusion Matrix
  • 7. Creating Confusion Matrix in Python
  • 8. Evaluating performance of model
  • 9. Evaluating model performance in Python

  • 45. Linear Discriminant Analysis (LDA)
  • 1. Linear Discriminant Analysis
  • 2. LDA in Python

  • 46. K Nearest neighbors classifier
  • 1. Test-Train Split
  • 2. Test-Train Split in Python
  • 3. K-Nearest Neighbors classifier
  • 4. K-Nearest Neighbors in Python Part 1
  • 5. K-Nearest Neighbors in Python Part 2

  • 47. Comparing results from 3 models
  • 1. Understanding the results of classification models
  • 2. Summary of the three models

  • 48. Simple Decision Trees
  • 1. Introduction to Decision trees
  • 2. Basics of Decision Trees
  • 3. Understanding a Regression Tree
  • 4. The stopping criteria for controlling tree growth
  • 5. Importing the Data set into Python
  • 6. Missing value treatment in Python
  • 7. Dummy Variable Creation in Python
  • 8. Dependent- Independent Data split in Python
  • 9. Test-Train split in Python
  • 10. Creating Decision tree in Python
  • 11. Evaluating model performance in Python
  • 12. Plotting decision tree in Python
  • 13. Pruning a tree
  • 14. Pruning a tree in Python

  • 49. Simple Classification Trees
  • 1. Classification tree
  • 2. The Data set for Classification problem
  • 3. Classification tree in Python Preprocessing
  • 4. Classification tree in Python Training
  • 5. Advantages and Disadvantages of Decision Trees

  • 50. Ensemble technique 1 - Bagging
  • 1. Ensemble technique 1 - Bagging
  • 2. Ensemble technique 1 - Bagging in Python

  • 51. Ensemble technique 2 - Random Forests
  • 1. Ensemble technique 2 - Random Forests
  • 2. Ensemble technique 2 - Random Forests in Python
  • 3. Using Grid Search in Python

  • 52. Ensemble technique 3 - Boosting
  • 1. Boosting
  • 2. Ensemble technique 3a - Boosting in Python
  • 3. Ensemble technique 3b - AdaBoost in Python
  • 4. Ensemble technique 3c - XGBoost in Python

  • 53. Introduction - Deep Learning
  • 1. Introduction to Neural Networks and Course flow
  • 2. Perceptron
  • 3. Activation Functions
  • 4. Creating Perceptron model in Python - Part 1
  • 5. Creating Perceptron model in Python - Part 2

  • 54. Neural Networks - Stacking cells to create network
  • 1. Basic Terminologies
  • 2. Gradient Descent
  • 3. Back Propagation Part - 1
  • 4. Back Propagation - Part 2
  • 5. Some Important Concepts
  • 6. Hyperparameter

  • 55. ANN in Python
  • 1. Keras and Tensorflow
  • 2. Installing Tensorflow and Keras
  • 3. Dataset for classification
  • 4. Normalization and Test-Train split
  • 5. Different ways to create ANN using Keras
  • 6. Building the Neural Network using Keras
  • 7. Compiling and Training the Neural Network model
  • 8. Evaluating performance and Predicting using Keras
  • 9. Building Neural Network for Regression Problem - Part 1
  • 10. Building Neural Network for Regression Problem - Part 2
  • 11. Building Neural Network for Regression Problem - Part 3
  • 12. Using Functional API for complex architectures
  • 13. Saving - Restoring Models and Using Callbacks - Part 1
  • 14. Saving - Restoring Models and Using Callbacks - Part 2
  • 15. Hyperparameter Tuning

  • 56. CNN Basics
  • 1. CNN Introduction
  • 2. Stride
  • 3. Padding
  • 4. Filters and feature map
  • 5. Channels
  • 6. Pooling Layer

  • 57. Creating CNN model in Python
  • 1. CNN model in Python - Preprocessing
  • 2. CNN model in Python - structure and Compile
  • 3. CNN model in Python - Training and results
  • 4. Comparison - Pooling vs Without Pooling in Python

  • 58. Project Creating CNN model from scratch in Python
  • 1. Project - Introduction
  • 2. Data for the project.html
  • 3. Project - Data Preprocessing in Python
  • 4. Project - Training CNN model in Python
  • 5. Project in Python - model results

  • 59. Project Data Augmentation for avoiding overfitting
  • 1. Project - Data Augmentation Preprocessing
  • 2. Project - Data Augmentation Training and Results

  • 60. Transfer Learning Basics
  • 1. ILSVRC
  • 2. LeNET
  • 3. VGG16NET
  • 4. GoogLeNet
  • 5. Transfer Learning
  • 6. Project - Transfer Learning - VGG16 - Part - 1
  • 7. Project - Transfer Learning - VGG16 - Part - 2
  • 8. Project - Transfer Learning - VGG16 - Part - 3
  • 9. The final milestone!

  • 61. Congratulations & about your certificate
  • 1. Bonus Lecture.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 13291
    حجم: 15396 مگابایت
    مدت زمان: 2178 دقیقه
    تاریخ انتشار: 20 خرداد 1402
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید