وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

2023 CORE: Data Science and Machine Learning

سرفصل های دوره

A complete survey of all core skills required on the job


1. Introduction - First Principals
  • 1. Introduction
  • 2. Course Overview.html
  • 3. Course Structure
  • 4. Course Philosophy
  • 5. First Principles - Who
  • 6. First Principles - Why 13
  • 7. First Principles - Why 23
  • 8. First Principles - Why 33
  • 9. Reading Assignment.html
  • 10. First Principles - What
  • 11. First Principles - What Data Analyst Example Product
  • 12. First Principles - What Data Scientist Example Product
  • 13. First Principles - What Machine Learning Engineer Example Product
  • 14. First Principles - What Data & Sources
  • 15. First Principles - What Kaggle Introduction
  • 16. First Principles - How
  • 17. Data Science Battle Station
  • 18. Section Wrap Up
  • 19. Assignments.html

  • 2. Data Analyst - Case Study - Intro & Basic Spreadsheets
  • 1. Data Analyst Overview
  • 2. Spreadsheets Overview
  • 3. Introduction to MS Excel
  • 4. Setting up MS Excel.html
  • 5. Overview of MS Excel
  • 6. Excel Templates
  • 7. Workbook Overview
  • 8. Protecting Workbooks
  • 9. Sharing Workbooks
  • 10. Operators
  • 11. Built-in Functions

  • 3. Data Analyst - Case Study - Intermediate Spreadsheets
  • 1. Math - Summary Statistics
  • 2. Calculating Summary Statistics from Scratch
  • 3. Import a Text File
  • 4. Data Tables
  • 5. Summary Statistics on Tables
  • 6. Summary Statistics Dashboard.html
  • 7. Assignment Review
  • 8. Importing Data - Intermediate
  • 9. Lookups and Matches
  • 10. Calculating Churn and Customer Lifetime Value
  • 11. Financial Forecasting (Time Series)
  • 12. Data Visualization Introduction
  • 13. Data Visualization Excel
  • 14. Dashboards Best Practices
  • 15. Dashboards in Excel
  • 16. Build a Dashboard.html
  • 17. Assignment Solution

  • 4. Data Analyst - Case Study - Advanced Spreadsheets
  • 1. Importing Data - Power Query
  • 2. Pivot Tables
  • 3. Mathematical Modeling - Linear Programming
  • 4. Solver - Linear Programming in Excel
  • 5. Analysis Toolpack
  • 6. Visual Basic for Applications (VBA) - Introduction
  • 7. Spreadsheet Conclusion
  • 8. Complete LinkedIn Excel Assessment.html

  • 5. Data Analyst - Case Study - SQL Basics
  • 1. SSI - databases
  • 2. SQL Text Editor - Sublime
  • 3. SQL Syntax
  • 4. Introduction to SQLite Databases
  • 5. SQLite Install
  • 6. SQLite Database Creation
  • 7. Basic SQL - SELECT, FROM, WHERE statements
  • 8. Basic SQL - BETWEEN, LIKE statements
  • 9. Basic SQL - AND, OR, NOT, EXISTS, NULL statements
  • 10. Basic SQL - ORDER BY, DISTINCT statements

  • 6. Data Analyst - Case Study - SQL Intermediate and Advanced
  • 1. Intermediate SQL - Aggregate Functions
  • 2. Intermediate SQL - WITH and subqueries
  • 3. Advanced SQL - Inserting, Updating, and Deleting data
  • 4. Advanced SQL - Views
  • 5. Connecting SQLite to Excel
  • 6. Kaggle SQL Course.html

  • 7. Data Analyst - Case Study - Business Intelligence and Tableau Introduction
  • 1. Introduction to Business Intelligence (BI)
  • 2. Why Tableau
  • 3. Installing Tableau Public
  • 4. Tableau Overview
  • 5. Tableau Data Types
  • 6. Tableau Basic Viz
  • 7. Tableau Filters
  • 8. Connecting Tableau to OData Sources
  • 9. Joining Data in Tableau

  • 8. Data Analyst - Case Study - Tableau Intermediate and Advanced Topics
  • 1. Tableau Intermediate Bar Charts
  • 2. Tableau Dates
  • 3. Tableau Visualizing Comparisons
  • 4. Tableau Visualizing Distributions
  • 5. Tableau Multiple Axis
  • 6. Tableau Formating
  • 7. Tableau Calculations and Parameters
  • 8. Tableau Dashboards and Stories
  • 9. Tableau Advanced Analysis
  • 10. Sharing with Tableau Public
  • 11. Tableau Desktop Pro Overview
  • 12. Assignment Portfolio, and Resume Updates.html

  • 9. Data Scientist - Case Study - Introduction to R
  • 1. Introduction to the Data Scientist (Generalist)
  • 2. Overview of R
  • 3. Intro to CRAN and installing base R
  • 4. Installing RStudio
  • 5. Overview of RStudio
  • 6. Calculations in Base R
  • 7. Objects in Base R
  • 8. Functions in Base R
  • 9. The Basics of R Scripts
  • 10. Base R Datasets
  • 11. Base R Help and Plots
  • 12. Installing R Packages - More on Plots and Objects
  • 13. Atomic Vectors
  • 14. Object Attributes
  • 15. Matrix and Array Objects
  • 16. Classes
  • 17. Factors
  • 18. Coercion
  • 19. Lists
  • 20. Data Frames
  • 21. Loading and Saving Data Part 1
  • 22. Loading and Saving Data Part 2
  • 23. Selecting Values from Data Frames
  • 24. Changing Values in Data Frames
  • 25. Sub Setting Data Frames
  • 26. Missing Values
  • 27. More on Selecting Values
  • 28. Programming Flow Controls

  • 10. Data Scientist - Case Study - Exploratory Data Analysis and the R Tidyverse
  • 1. An Introduction to EDA
  • 2. EDA Example on Kaggle
  • 3. Expanding Summary Statistics - Location
  • 4. Location Examples in R
  • 5. Expanding Summary Statistics - Spread
  • 6. Spread Examples in R
  • 7. Important EDA Tools
  • 8. Introduction to the Tidyverse and ggplot2
  • 9. Tidyverse website
  • 10. ggplot - Mapping Aesthetics
  • 11. ggplot - Facets
  • 12. ggplot - Multiple Geom
  • 13. ggplot - Stat Transforms
  • 14. ggplot - Position Adjustments
  • 15. ggplot - Coord Systems
  • 16. ggplot - Summary
  • 17. ggplot - Gallery Book
  • 18. R Object Names
  • 19. dplyr - Overview
  • 20. dplyr - Filter
  • 21. dplyr - Arrange and Select
  • 22. dplyr - Mutate
  • 23. dplyr - Pipes, group_by, and summarise
  • 24. stringr - Basics
  • 25. stringr - Matching
  • 26. lubridate - Basics
  • 27. Intro to Markdown
  • 28. Intro to RMarkdown
  • 29. Quick Overview of Notebooks
  • 30. EDA Assignment.html

  • 11. Data Scientist - Case Study - Useful Statistics for Data Scientists
  • 1. Intro to Useful Statistics
  • 2. Useful Probability 1 of 2
  • 3. Useful Probability 2 of 2
  • 4. Distributions Using R
  • 5. Useful Frequentist Statistics
  • 6. Useful Frequentists Hypothesis Testing
  • 7. Hypothesis Testing in R
  • 8. AB Testing
  • 9. AB Testing in R
  • 10. Bootstrap Introduction
  • 11. Bootstrap in R
  • 12. Useful Bayesian Statistics
  • 13. Bayesian Stats in R (beta-binomial)
  • 14. Bayesian Stats in R (Thompson Sampling)
  • 15. Useful Simulations - Monte Carlo
  • 16. Monte Carlo Simulations in R
  • 17. Useful Regression Modeling Introduction
  • 18. Simple Linear Regression in R
  • 19. Useful Multiple Regression
  • 20. Multiple Regression in R
  • 21. Regression Issues and Concerns
  • 22. Useful Time Series Modeling
  • 23. Assignment Update resume and portfolio.html
  • 24. Time Series Modeling in R

  • 12. Data Scientist - Case Study - Sharing Data Science With the Web
  • 1. SSI - Web Development
  • 2. SSI - Basic Web Development Example
  • 3. Web Development with Git in RStudio 1 of 2
  • 4. Web Development with Git in RStudio 2 of 2
  • 5. Reading Assignment Git.html
  • 6. Hosting with Github Pages
  • 7. Using the blogdown R package to create websites
  • 8. Introduction to Shiny
  • 9. Hello World Shiny App
  • 10. Closer Look at Shiny
  • 11. Hosting Shiny and shinyapps.io
  • 12. shinyapps.io and The shinydashboard Package

  • 13. Data Scientist Section Closeout
  • 1. Data Scientist Section Closeout
  • 2. Assignment Update resume and projects.html

  • 14. Machine Learning Engineer - Case Study - Introduction
  • 1. Job Overview

  • 15. ML Engineer - The Cloud, Docker, and Python Development Environments
  • 1. SSI - Intro to the Cloud
  • 2. SSI - The AWS Cloud Console
  • 3. SSI - The Command Line Interface
  • 4. Command Line Demo
  • 5. SSI - Intro to Docker
  • 6. SSI - Docker Continued
  • 7. SSI - Docker Demo
  • 8. Project Jupyter Docker Stack
  • 9. Using Docker on a Cloud Server part 1
  • 10. Using Docker on a Cloud Server part 2
  • 11. Other Python Development Environments
  • 12. Project Jupyter

  • 16. Machine Learning Engineer - Case Study - Basic Python
  • 1. Python Overview
  • 2. Python in Jupyterlab
  • 3. Basic Notebook Cell Operations
  • 4. Basic Math Operations
  • 5. Basic Data Types
  • 6. Basic Variables
  • 7. Basic Built-in Functions
  • 8. Basic Comparison Operators
  • 9. Basic Boolean Operators
  • 10. Combining Boolean and Comparison Operators
  • 11. Basic Elements of Control Flow
  • 12. Control Flow Continued
  • 13. Importing Modules
  • 14. Functions
  • 15. Local vs. Global Variables
  • 16. Lists in Depth
  • 17. Lists in Depth Continued
  • 18. Additive Operators
  • 19. Methods on Lists
  • 20. Dictionaries
  • 21. Classes and Methods
  • 22. Interacting with Files

  • 17. Machine Learning Engineer - Case Study - Intermediate Python for Data Science
  • 1. Python for Data Science
  • 2. Useful Matrix Operations
  • 3. Numpy for Matrix Operations
  • 4. Numpy Indexing and Slicing
  • 5. Numpy Boolean Indexing
  • 6. Numpy Reshape and Transpose
  • 7. Numpy Pseudorandom Numbers
  • 8. Numpy Unary and Binary Functions
  • 9. Numpy Aggregate Functions
  • 10. Numpy Saving and Loading Data
  • 11. Pandas Overview
  • 12. Pandas Read Data
  • 13. Pandas Basic Exploration
  • 14. Pandas at and iat
  • 15. Pandas Reshaping Data
  • 16. Pandas Subsetting
  • 17. Pandas Summarize Data
  • 18. Pandas Groupby
  • 19. Pandas Missing Data
  • 20. Pandas and Ploting
  • 21. Matplotlib Documentation
  • 22. Matplotlib Low Level
  • 23. Matplotlib More on Subplots
  • 24. Matplotlib Color, Linesytle, and Markers
  • 25. Matplotlib Axis Labels
  • 26. Matplotlib Saving Plots
  • 27. Seaborn Documentation
  • 28. Seaborn and Pandas

  • 18. Machine Learning Engineer - Case Study - Machine Learning with Python
  • 1. Python for Machine Learning
  • 2. Machine Learning Considerations
  • 3. Evaluating Supervised Models
  • 4. Heuristic Modeling
  • 5. Heuristic Modeling in Python
  • 6. Model Training Process
  • 7. Linear Regression
  • 8. Linear Regression in Python
  • 9. Logistic Regression
  • 10. Logistic Regression in Python
  • 11. Classification and Regression Tree (CART) Models
  • 12. Decision Trees in Python
  • 13. Ensemble Models
  • 14. Random Forests and XGBoost in Python
  • 15. Feature Engineering and Unsupervised Learning
  • 16. Feature Engineering in Python
  • 17. ssi - Deep Learning
  • 18. ssi - Deep Learning Useful Applications and APIs
  • 19. ssi - Deploying an ML Model in Production
  • 20. ssi- Packaging and Deploying an ML Model With Docker
  • 21. Section Closeout
  • 22. Assignment Update resume and portfolio.html
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 5536
    حجم: 11737 مگابایت
    مدت زمان: 1691 دقیقه
    تاریخ انتشار: 20 بهمن 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید