وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Python Regression Analysis: Statistics & Machine Learning

سرفصل های دوره

Learn Complete Hands-On Regression Analysis for Practical Statistical Modelling and Machine Learning in Python


1 - INTRODUCTION TO THE COURSE The Key Concepts and Software Tools
  • 1 - Welcome to the Course
  • 2 - Data and Scripts For the Course.html
  • 2 - scriptsLecture.zip
  • 3 - Python Data Science Environment
  • 4 - For Mac Users
  • 5 - Introduction to IPython
  • 6 - IPython in Browser
  • 7 - Python Data Science Packages To Be Used

  • 2 - Read in Data From Different Sources With Pandas
  • 8 - What are Pandas
  • 9 - Read in Data from CSV
  • 10 - Read in Excel Data
  • 11 - Read in HTML Data

  • 3 - Data Cleaning & Munging
  • 12 - Remove Missing Values
  • 13 - Conditional Data Selection
  • 14 - Data Grouping
  • 15 - Data Subsetting
  • 16 - Ranking & Sorting
  • 17 - Concatenate
  • 18 - Merging & Joining Data Frames

  • 4 - Statistical Data AnalysisBasic
  • 19 - What is Statistical Data Analysis
  • 20 - Some Pointers on Collecting Data for Statistical Studies
  • 21 - Some Pointers on Exploring Quantitative Data.html
  • 22 - Explore the Quantitative Data Descriptive Statistics
  • 23 - Grouping & Summarizing Data by Categories
  • 24 - Visualize Descriptive StatisticsBoxplots
  • 25 - Common Terms Relating to Descriptive Statistics
  • 26 - Data Distribution Normal Distribution
  • 27 - Check for Normal Distribution
  • 28 - Standard Normal Distribution and Zscores
  • 29 - Confidence IntervalTheory
  • 30 - Confidence IntervalCalculation

  • 5 - Regression Modelling for Defining Relationship bw Variables
  • 31 - Explore the Relationship Between Two Quantitative Variables
  • 32 - Correlation Analysis
  • 33 - Linear RegressionTheory
  • 34 - Linear RegressionImplementation in Python
  • 35 - Conditions of Linear Regression
  • 36 - Conditions of Linear RegressionCheck in Python
  • 37 - Polynomial Regression
  • 38 - GLM Generalized Linear Model
  • 39 - Logistic Regression

  • 6 - Machine Learning for Data Science
  • 40 - How is Machine Learning Different from Statistical Data Analysis
  • 41 - What is Machine Learning ML About Some Theoretical Pointers

  • 7 - Machine Learning Based Regression Modelling
  • 42 - What Is This Section About
  • 43 - Data Preparation for Supervised Learning
  • 44 - Pointers on Evaluating the Accuracy of Classification and Regression Modelling
  • 45 - RFRegression
  • 46 - Support Vector Regression
  • 47 - knnRegression
  • 48 - Gradient Boostingregression
  • 49 - Theory Behind ANN and DNN
  • 50 - Regression with MLP

  • 8 - Miscallaneous Information
  • 51 - Using Colabs for Online Data Science
  • 51 - colab.zip
  • 52 - Colab GPU
  • 53 - Github
  • 54 - What is Machine Learning
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 3186
    حجم: 4049 مگابایت
    مدت زمان: 385 دقیقه
    تاریخ انتشار: 29 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید