وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

DP-100: Azure Machine Learning & Data Science Exam Prep 2023

سرفصل های دوره

Azure Machine Learning, AzureML, Exam DP-100: Designing and Implementing a Data Science Solution, 4 End-to-End Projects


1 - Getting Started with Azure ML
  • 1 - Introduction to Azure Machine Learning
  • 2 - Introduction to Azure Machine Learning Studio
  • 3 - Azure ML Cheat Sheet
  • 4 - DP100 Exam Skills Measured Exam Curriculum

  • 2 - Setting up Azure Machine Learning Workspace
  • 5 - Azure ML Architecture and Concepts
  • 6 - Creating AzureML Workspace
  • 7 - Workspace Overview
  • 8 - AzureML Studio Overview
  • 9 - Introduction to Azure ML Datasets and Datastores
  • 10 - Creating a Datastore
  • 11 - Creating a Dataset
  • 12 - Exploring AzureML Dataset
  • 13 - Introduction to Azure ML Compute Resources
  • 14 - Creating Compute Instance and Compute Cluster
  • 15 - Deleting the Resources

  • 3 - Running Experiments and Training Models
  • 16 - Azure ML Pipeline
  • 17 - Creating New Pipeline using AzureML Designer
  • 18 - Submitting the Designer Pipeline Run

  • 4 - Deploying the Models
  • 19 - Creating RealTime Inference Pipeline
  • 20 - Deploying RealTime Endpoint in AzureML Designer
  • 21 - Creating Batch Inference Pipeline in AzureML Designer
  • 22 - Running Batch Inference Pipeline in AzureML Designer
  • 23 - Deleting the Resources

  • 5 - AzureML Designer Data Preprocessing
  • 24 - Setting up Workspace and Compute Resources
  • 25 - Sample Datasets
  • 26 - Select Columns in Dataset
  • 27 - Importing External Dataset From Web URL
  • 28 - Edit Metadata Column Names
  • 29 - Edit Metadata Feature Type and Data Type
  • 30 - Creating Storage Account Datastore and Datasets
  • 31 - Adding Columns From One Dataset to Another One
  • 32 - Adding Rows From One Dataset to Another One
  • 33 - Clean Missing Data Module
  • 34 - Splitting the Dataset
  • 35 - Normalizing Dataset
  • 36 - Exporting Data to Blob Storage
  • 37 - Deleting the Resources

  • 6 - Project 1 Regression Using AzureML Designer
  • 38 - Creating Workspace Compute Resources Storage Account Datastore and Dataset
  • 39 - Business Problem
  • 40 - Analyzing the Dataset
  • 41 - Data Preprocessing
  • 42 - Training ML Model with Linear Regression Online Gradient Descent
  • 43 - Evaluating the Results
  • 44 - Training ML Model with Linear Regression Ordinary least squares
  • 45 - Training ML Model with Boosted Decision Tree and Decision Forest Regression
  • 46 - Finalizing the ML Model
  • 47 - Creating and Deploying RealTime Inference Pipeline
  • 48 - Creating and Deploying Batch Inference Pipeline
  • 49 - Deleting the Resources

  • 7 - Project 2 Classification Using AzureML Designer
  • 50 - Creating Workspace Compute Resources Storage Account Datastore and Dataset
  • 51 - Business Problem
  • 52 - Analyzing the Dataset
  • 53 - Data Preprocessing
  • 54 - Training ML Model with TwoClass Logistic Regression
  • 55 - Training ML Model with TwoClass SVM
  • 56 - Training ML Model with TwoClass Boosted Decision Tree & Decision Forest
  • 57 - Finalizing the ML Model
  • 58 - Creating and Deploying Batch Inference Pipeline

  • 8 - AzureML SDK Setting up Azure ML Workspace
  • 59 - AzureML SDK Introduction
  • 60 - Creating Workspace using AzureMl SDK
  • 61 - Creating a Datastore using AzureMl SDK
  • 62 - Creating a Dataset using AzureMl SDK
  • 63 - Accessing the Workspace Datastore and Dataset with AzureML SDK
  • 64 - AzureML Dataset and Pandas Dataset Conversion
  • 65 - Uploading Local Datasets to Storage Account

  • 9 - AzureML SDK Running Experiments and Training Models
  • 66 - Running Sample Experiment in AzureML Environment
  • 67 - Logging Values to Experiment in AzureML Environment
  • 68 - Introduction to Azure ML Environment
  • 69 - Running Script in AzureML Environment Part 1
  • 70 - Running Script in AzureML Environment Part 2
  • 71 - Uploading the output file to Existing run in AzureML Environment
  • 72 - Logistic Regression in Local Environment Part 1
  • 73 - Logistic Regression in Local Environment Part 2
  • 74 - Creating Python Script Logistic Regression
  • 75 - Running Python Script for Logistic Regression in AzureML Environment
  • 76 - logconfusionmatrix Method
  • 77 - Provisioning Compute Cluster in AzureML SDK
  • 78 - Automate Model Training Introduction
  • 79 - Automate Model Training Pipeline Run Part 1
  • 80 - Automate Model Training Pipeline Run Part 2
  • 81 - Automate Model Training Data Processing Script
  • 82 - Automate Model Training Model Training Script
  • 83 - Automate Model Training Running the Pipeline

  • 10 - Use Automated ML to Create Optimal Models
  • 84 - Introduction to Automated ML
  • 85 - Automated ML in Azure Machine Learning studio
  • 86 - Automated ML in Azure Machine Learning SDK

  • 11 - Tune hyperparameters with Azure Machine Learning
  • 87 - What Hyperparameter Tuning Is
  • 88 - Define the Hyperparameters Search Space
  • 89 - Sampling the Hyperparameter Space
  • 90 - Specify Early Termination Policy
  • 91 - Configuring the Hyperdrive Run Part 1
  • 92 - Configuring the Hyperdrive Run Part 2
  • 93 - Creating the Hyperdrive Training Script
  • 94 - Getting the Best Model and Hyperparameters

  • 12 - Use model explainers to interpret models
  • 95 - Interpretability Techniques in Azure
  • 96 - Model Explainer on Local Machine
  • 97 - Model Explainer in AzureML Part 1
  • 98 - Model Explainer in AzureML Part 2
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 306
    حجم: 5626 مگابایت
    مدت زمان: 795 دقیقه
    تاریخ انتشار: 22 دی 1401
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید