در حال حاضر محصولی در سبد خرید شما وجود ندارد.

پنل کاربری

رمز خود را فراموش کرده اید؟ اگر اولین بار است از سایت جدید استفاده میکنید باید پسورد خود را ریست نمایید.
دسته بندی
دسته بندی

100 Days Of Code: Real World Data Science Projects Bootcamp

34,900 تومان
بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
خرید دانلودی فوری

در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

ویدئو معرفی این محصول

Build 100 Projects in 100 Days- Data Science, Machine Learning, Deep Learning (Python, Flask, Django, AWS, Heruko Cloud)


1. Course Introduction
  • 1. Course Introduction
  • 2. Course Outline

  • 2. Project-1 Pan Card Tempering Detector App -Deploy On Heroku
  • 1. Introduction To Pan Card Tempering Detector
  • 2. Loading libraries and dataset
  • 3. Creating the pancard detector with opencv.
  • 4. Creating the Flask App
  • 5. Creating Important functions
  • 6. Deploy the app in Heruko1
  • 7. Testing the deployed pan card detector
  • 8.1 Collab Code.zip
  • 8.2 Pan Card Tampering Flask App.zip
  • 8. Download The Project Files.html

  • 3. Project-2 Dog breed prediction Flask App
  • 1. Introduction to dog breed prediction
  • 2. Importing the data and libraries
  • 3. Data Preprocessing
  • 4. Build and Train Model
  • 5. Testing the model
  • 6. Creating the flask App
  • 7. Running the app in system
  • 8.1 Collab Code.zip
  • 8.2 Dog Breed Prediction Streamlit App.zip
  • 8. Download The Project Files.html

  • 4. Project-3 Image Watermarking App -Deploy On Heroku
  • 1. Introduction Image Watermarking
  • 2. Importing libraries and logo
  • 3. Create text and image watermark
  • 4. Creating the app
  • 5. Deploying the app in heruko
  • 6.1 Collab Code.zip
  • 6.2 Image Watermarking Flask App.zip
  • 6. Download The Project Files.html

  • 5. Project-4 Traffic sign classification
  • 1. Introduction to traffic sign classification
  • 2. importing the data and libraries
  • 3. Image processing
  • 4. creating and testing the model
  • 5. Creating model for test set
  • 6.1 Collab Code.zip
  • 6. Download The Project Files.html

  • 6. Project-5 Text Extraction From Images Application
  • 1. Introduction to text extraction
  • 2. Importing libraries and data
  • 3. Extracting the test from image
  • 4. Modifiying the extractor
  • 5. creating the extractor app
  • 6. running the extractor app
  • 7.1 Collab Code.zip
  • 7.2 Text Extraction Flask App.zip
  • 7. Download The Project Files.html

  • 7. Project-6 Plant Disease Prediction Streamlit App
  • 1. Introduction
  • 2. Importing libraries and data
  • 3. Understanding the data and data preprocessing
  • 4. Model building
  • 5. Creating an app using streamlit
  • 6.1 Collab Code.zip
  • 6.2 Plant Disease Flask App.zip
  • 6. Download The Project Files.html

  • 8. Project-7 Vehicle Detection And Counting Flask App
  • 1. Intro Vehicle Detection
  • 2. Importing libraries and data Vehicle Detection
  • 3. Transforing Images and creating output Vehicle Detection
  • 4. Creating a flask APP Vehicle Detection
  • 5.1 Collab Code.zip
  • 5.2 Detect and Count Vehicle Flask App.zip
  • 5. Download The Project Files.html

  • 9. Project-8 Create A Face Swapping Flask App
  • 1. Intro to Face Swap
  • 2. Importing libraries and data FACE SWAP
  • 3. Data preprocessing and creating output FACE SWAP
  • 4. Creating A Flask APP FACE SWAP
  • 5.1 Collab code.zip
  • 5.2 Face Swap Flask App.zip
  • 5. Download The Project Files.html

  • 10. Project-9 Bird Species Prediction Flask App
  • 1. Introduction to Bird Species Predictio
  • 2. Improting Libraries And Data
  • 3. Dataprocessing Bird Species Prediction
  • 4. Creating ML Model Bird Species Prediction
  • 5. Creating A Flask APP
  • 6.1 Bird Species Flask App.zip
  • 6.2 Collab Code.zip
  • 6. Download The Project Files.html

  • 11. Project-10 Intel Image Classification Flask App
  • 1. Introduction to Intel Image Classification
  • 2. Importing and processing data
  • 3. Creating a Model
  • 4. Creating a Flask App
  • 5.1 Collab Code.zip
  • 5.2 Intel Image Flask App.zip
  • 5. Download The Project Files.html

  • 12. Project-11 Language Translator App Using IBM Cloud Service -Deploy On Heroku
  • 1. Introduction
  • 2. Setting Service
  • 3. Integrating Service
  • 4. Coding the UI
  • 5. Deployment on Heroku
  • 6.1 Language Translator -Project Files.zip
  • 6. Download The Project Files.html

  • 13. Project-12 Predict Views On Advertisement Using IBM Watson -Deploy On Heroku
  • 1. Project Overview
  • 2. Introduction
  • 3. Setting up Watson Studio Part-1
  • 4. Setting up Watson Studio Part-2
  • 5. Deploying the Model on DeploymentCenter
  • 6. Integrating Watson Service with UI
  • 7. Deployment on Heroku Cloud.
  • 8.1 Advertisement Prediction -IBM watson-Code Files.zip
  • 8. Download The Project Files.html

  • 14. Project-13 Laptop Price Predictor -Deploy On Heroku
  • 1. Overview
  • 2. EDA Part-1
  • 3. EDA Part-2
  • 4. EDA Part-3
  • 5. EDA Part-4
  • 6. EDA Part-5
  • 7. EDA Part-6
  • 8. EDA Part-7
  • 9. Model Building Part-1
  • 10. Model Building Part-2
  • 11. Model Building Part-3
  • 12. Model Building Part-4
  • 13. Model Building Part-5.
  • 14. Integrating with UI
  • 15. Deployement on Heroku
  • 16.1 laptop price predictor -Code Files.zip
  • 16. Download The Project Files.html

  • 15. Project-14 WhatsApp Text Analyzer -Deploy On Heroku
  • 1. Introduction
  • 2. Fetching Data from Whatsapp
  • 3. Project Structure
  • 4. Text Processing Part 1
  • 5. Text Processing Part2
  • 6. Text Processing Part 3
  • 7. Text Processing Part4
  • 8. Text Analytics Part 1
  • 9. Model Building Part-1
  • 10. Text Analytics Part 3
  • 11. Text Analytics Part 3
  • 12. Text Analytics Part5
  • 13. Text Analytics Part6
  • 14. Deployment on Heroku Cloud
  • 15.1 Whatsapp text analyzer -Code Files.zip
  • 15. Download The Project Files.html

  • 16. Project-15 Course Recommendation System -Deploy On Heroku
  • 1. Introduction
  • 2. Coding Recommendation System
  • 3. Integrating with Flask Server
  • 4. Exploratory Data Analysis
  • 5. Integrating Python Code with JavaScript
  • 6. Deployment on Heroku Cloud
  • 7.1 Course recommendation system -Code Files.zip
  • 7. Download The Project Files.html

  • 17. Project-16 IPL Match Win Predictor -Deploy On Heroku
  • 1. Introduction
  • 2. EDA Part 1
  • 3. EDA Part 2
  • 4. EDA Part 3
  • 5. EDA Part 4
  • 6. Model Building
  • 7. Coding the UI
  • 8. Deployment on HerokuCloud
  • 9.1 IPL match predictor- Code Files.zip
  • 9. Download The Project Files.html

  • 18. Project-17 Body Fat Estimator App -Deploy On Microsoft Azure
  • 1. Introduction
  • 2. EDA Part 1
  • 3. EDA Part 2
  • 4. Feature Selection Part 1
  • 5. Feature Selection Part 2
  • 6. Model Building
  • 7. Model Evaluation
  • 8. Coding the UI Part 1.
  • 9. Coding the UI Part 2
  • 10. Model Deployment on Azure Part 1
  • 11. Model Deployment on Azure Part 2.
  • 12.1 Body fat estimator -Code Files.zip
  • 12. Download The Project Files.html

  • 19. Project-18 Campus Placement Predictor App -Deploy On Microsoft Azure
  • 1. Introduction
  • 2. Data Preprocessing.
  • 3. EDA Part 1
  • 4. EDA Part 2.
  • 5. Feature Selection
  • 6. Model Building.
  • 7. HyperParameter Tuning,Model Testing
  • 8. Coding the UI Part 1
  • 9. Coding the UI Part 2
  • 10. Coding the UI Part 3
  • 11. Deployment Part 1
  • 12. Deployment Part 2
  • 13.1 Campus placement predictor -Code Files.zip
  • 13. Download The Project Files.html

  • 20. Project-19 Car Acceptability Predictor -Deploy On Google Cloud
  • 1. Introduction
  • 2. Data Preprocessing
  • 3. Model Building
  • 4. Coding the UI
  • 5. Integrating Jinja Framework
  • 6. Integrating JavaScript with Flask
  • 7. Deployment on GCP
  • 8.1 Car acceptability prediction -Code Files.zip
  • 8. Download The Project Files.html

  • 21. Project-20 Book Genre Classification App -Deploy On Amazon Web Services
  • 1. Introduction
  • 2. Text Processing Part1
  • 3. Text Processing Part2
  • 4. Model Building.
  • 5. Model Testing
  • 6. Integrating Model with Flask
  • 7. Touch points on AWS
  • 8. Deploying model on AWS EC2 instance
  • 9. Fixing the Errors
  • 10.1 Book genre classification -Code Files.zip
  • 10. Download The Project Files.html

  • 22. Project 21 DNA classification for finding E.Coli - Deploy On AWS
  • 1. Introduction to project
  • 2. Understanding the libraries and dataset
  • 3. Preprocessing the data
  • 4. Building and training the model
  • 5. Understanding MLPClassifier model
  • 6. Understanding the Django framework
  • 7. Running our Django application
  • 8. Hosting on AWS
  • 9. Hosting on AWS
  • 10. Hosting on AWS
  • 11.1 E.coli Code files.zip
  • 11. Download The Project Files.html

  • 23. Project 22 Predict the next word in a sentence. - AWS - Deploy On AWS
  • 1. Introduction
  • 2. Understanding about libraries and preprocessing dataset
  • 3. Text tokenization and vectorization
  • 4. Building and training the model
  • 5. Django framework
  • 6. Setting up the website and unsderstanding the flow
  • 7. Understanding the AWS cloud system
  • 8. Setting up the server and hosting the website
  • 9.1 Predict Next Word code files.zip
  • 9. Download The Project Files.html

  • 24. Project 23 Predict Next Sequence of numbers using LSTM - Deploy On AWS
  • 1. Introduction
  • 2. Understanding the libraries and dataset
  • 3. Building and training the model
  • 4. understanding the Django Framework
  • 5. Working witht the django framework to build the website
  • 6. Instantiating the instance with ec2
  • 7. Setting and running the server
  • 8.1 Predicting Sequence Code.zip
  • 8. Download The Project Files.html

  • 25. Project 24 Keyword Extraction from text using NLP - Deploy On Azure
  • 1. Introduction
  • 2. Introduction to libraries and data preprocessing
  • 3. Developing the TF-IDF model
  • 4. Understanding the django framework
  • 5. Finalizing the website
  • 6. Setting up the Azure VM
  • 7. Setting and running the server
  • 8.1 Keyword Extraction code &data.zip
  • 8. Download The Project Files.html

  • 26. Project 25 Correcting wrong spellings - Deploy On Azure
  • 1. Introduction
  • 2. Brief of libraries and preprocessing done
  • 3. Developing the NLP model
  • 4. Setting up the django application
  • 5. Working on the django website
  • 6. Creating the VM instance on Azure
  • 7. Setting up the VM for hosting
  • 8.1 Correct spelling preiction code & data.zip
  • 8. Download The Project Files.html

  • 27. Project 26 Music popularity classification - Deploy On Google App Engine
  • 1. Introduction
  • 2. Creating dataset through spotify API
  • 3. Understanding the libraries and preprocessing the data
  • 4. Developing the model_Trim
  • 5. Setting up the django project
  • 6. running our django application
  • 7. Setting up the VM
  • 8. Setting up the VM part-2
  • 9. setting the code in VM
  • 10.1 Music popularity Code & data.zip
  • 10. Download The Project Files.html

  • 28. Project 27 Advertisement Classification - Deploy On Google App Engine
  • 1. Introduction
  • 2. Understanding the libraries and the dataset
  • 3. Understanding TF-IDF
  • 4. Developing the LSTM model
  • 5. Configuring the django porject
  • 6. Running the django application
  • 7. Setting up the VM part-1
  • 8. Setting up the VM part-2
  • 9. Running the VM
  • 10.1 Video ADs Code & data.zip
  • 10. Download The Project Files.html

  • 29. Project 28 Image Digit Classification - Deploy On AWS
  • 1. Introduction
  • 2. Creating and preprocessing the dataset
  • 3. Building the baseline and CNN model
  • 4. Setting up the django application
  • 5. updating the website
  • 6. Instantiating the VM
  • 7. setting the code inside the VM
  • 8.1 Image Digits Code & data.zip
  • 8. Download The Project Files.html

  • 30. Project 29 Emotion Recognition using Neural Network - Deploy On AWS
  • 1. Introduction
  • 2. Understanding the libraries and model
  • 3. Building and training the model
  • 4. Setting up the django project
  • 5. Running the django application
  • 6. Setting up the VM
  • 7. Running our code in the VM
  • 8.1 Emotion Code.zip
  • 8.2 Emotion dataset download link.txt
  • 8.3 emotion-dataset 160mb.zip
  • 8. Download The Project Files.html

  • 31. Project 30 Breast cancer Classification - Deploy On AWS
  • 1. Introduction
  • 2. Understanding the libraries and dataset
  • 3. Developing the model
  • 4. Setting up the django application
  • 5. Running the django application
  • 6. Setting up the VM
  • 7. Running the VM
  • 8.1 Breast Cancer Dataset Small -partial-.zip
  • 8.2 Complete Dataset 4GB download link.txt
  • 8. Download The Project Files.html
  • 9.1 Breast cancer detection Code.zip
  • 9. Download The Project Files 2.html

  • 32. Project-31 Sentiment Analysis Django App -Deploy On Heroku
  • 1. Introduction to Sentiment Analysis Logistic Regression
  • 2. Project Notebook Google Colab
  • 3. Building Django App
  • 4. Deploying APP in heruko
  • 5.1 1-Sentiment Analysis Code.zip
  • 5. Download The Project Files.html

  • 33. Project-32 Attrition Rate Django Application
  • 1. Introduction -Attrition Rate Django
  • 2. Creating Colab Notebook
  • 3. Creating Django App
  • 4. Deploying APP in heruko
  • 5.1 2-Attrition Rate Django code.zip
  • 5. Download The Project Files.html

  • 34. Project-33 Find Legendary Pokemon Django App -Deploy On Heroku
  • 1. Introduction -Working with Pokemon Dataset
  • 2. Creating Colab Notebook
  • 3. Creating DJango APP
  • 4. Deploying APP in heruko
  • 5.1 Pokemon APP Code.zip
  • 5. Download The Project Files.html

  • 35. Project-34 Face Detection Streamlit App
  • 1. Introduction to face app intro
  • 2. Creating The Face App Using OpenCV
  • 3. Creating The face app opencv
  • 4. Creating The face app opencv
  • 5.1 Face Detection App- Code.zip
  • 5. Download The Project Files.html

  • 36. Project-35 Cats Vs Dogs Classification Flask App
  • 1. Introduction To Cats Vs Dogs Classification
  • 2. Creating Project Notebook
  • 3. Building Model -Colab
  • 4. Building Flask App
  • 5. Building Flask App Deployement
  • 6.1 Cats Vs Dogs App Code.zip
  • 6. Download The Project Files.html

  • 37. Project-36 Customer Revenue Prediction App -Deploy On Heroku
  • 1. Introduction To Customer Revenue Prediction
  • 2. Colab Notebook Customer Revenue Prediction
  • 3. Creating Flask App
  • 4. Deploying Flask App
  • 5.1 Customer Revenue Prediction Code.zip
  • 5. Download The Project Files.html

  • 38. Project-37 Gender From Voice Prediction App -Deploy On Heroku
  • 1. Introduction- Gender From Voice Prediction
  • 2. Creating Project Notebook
  • 3. Creating Project App Django
  • 4. Deploying The App
  • 5.1 Voice Gender Prediction code.zip
  • 5. Download The Project Files.html

  • 39. Project-38 Restaurant Recommendation System
  • 1. Intro To - Restaurant Recommendation System.
  • 2. Creating Colab Notebook
  • 3. Exploratory Data Analysis-
  • 4. Data Analysis2
  • 5.1 Restaurant Rec - Code.zip
  • 5. Download The Project Files.html

  • 40. Project-39 Happiness Ranking Django App -Deploy On Heroku
  • 1. Introduction to Happiness Ranking
  • 2. Project Notebook
  • 3. Creating Django App
  • 4. Deploying Django App
  • 5.1 Happiness Ranking - Code.zip
  • 5. Download The Project Files.html

  • 41. Project-40 Forest Fire Prediction Django App -Deploy On Heroku
  • 1. Introduction To Forest Fire
  • 2. Project Notebook
  • 3. Project Notebook Part2-
  • 4. Creating Django APP
  • 5. Deploying Django App
  • 6.1 Forest Fires App -Code.zip
  • 6. Download The Project Files.html

  • 42. Project-41 Build Car Prices Prediction App -Deploy On Heroku
  • 1. Introduction
  • 2. Machine Learning model building part1
  • 3. Machine Learning model building part2
  • 4. Machine Learning model building part3
  • 5. Creating Django Application part1
  • 6. Creating Django Application part2
  • 7. Deploying on Heroku NW
  • 8.1 Car selling price prediction -Code.zip
  • 8. Download The Project Files.html

  • 43. Project-42 Build Affair Count Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Intoductory Machine Learning model building
  • 3. Feature Building and Selection
  • 4. Model Building
  • 5. Django Application Introduction
  • 6. 6Django Application building
  • 7. Deploying on Heroku
  • 8.1 Affair prediction- Code.zip
  • 8. Download The Project Files.html

  • 44. Project-43 Build Shrooming Predictions App -Deploy On Heroku
  • 1. Introduction
  • 2. Importing libraries and Understanding data
  • 3. Building the model
  • 4. Building Django Application
  • 5. Delpoying on Heroku
  • 6.1 Mushroom Classification App Code.zip
  • 6. Download The Project Files.html

  • 45. Project-44 Google Play App Rating prediction With Deployment On Heroku
  • 1. Introduction
  • 2. Introduction to libraries and dataset
  • 3. Preprocessing the data
  • 4. building the model
  • 5. Django Application
  • 6. Deploying to Heroku
  • 7.1 Google App rating preiction Code.zip
  • 7. Download The Project Files.html

  • 46. Project-45 Build Bank Customers Predictions Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Importing Libraries and understanding data
  • 3. Building and training the model
  • 4. Django Apllication
  • 5. Deploying on heroku
  • 6.1 Bank cards Code.zip
  • 6. Download The Project Files.html

  • 47. Project-46 Build Artist Sculpture Cost Prediction Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Understanding the data
  • 3. Outliers and Model
  • 4. Building Django Application
  • 5. Deploying to Heroku
  • 6.1 Artist Sculpture Code.zip
  • 6. Download The Project Files.html

  • 48. Project-47 Build Medical Cost Predictions Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Introduction and handling the data
  • 3. Building the model
  • 4. Django Application
  • 5. Heroku Deployment
  • 6.1 Medical Code.zip
  • 6. Download The Project Files.html

  • 49. Project-48 Phishing Webpages Classification Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Understanding the data
  • 3. Feature Selection and model building
  • 4. Django Application
  • 5. Deploying on Heroku
  • 6.1 Phishing code.zip
  • 6. Download The Project Files.html

  • 50. Project-49 Clothing Fit-Size predictions Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Understanding the data
  • 3. Cleaning the data.
  • 4. Building the model
  • 5. Implementing Django Application
  • 6. Deploying to heroku
  • 7.1 Clothing Code.zip
  • 7. Download The Project Files.html

  • 51. Project-50 Build Similarity In-Text Django App -Deploy On Heroku
  • 1. Introduction
  • 2. Cleaning the data
  • 3. Building the model.
  • 4. Implementing Django web application
  • 5. 5Deploying to Heroku
  • 6.1 Similarity in Texts Code.zip
  • 6. Download The Project Files.html

  • 52. Project-51 Black Friday Sale Project
  • 1. Importing libraries and data - BlackFridayVideo
  • 2. Understanding data
  • 3. Data visulaization and data preprocessing-
  • 4. Model building part1
  • 5. Model building part2
  • 6.1 Notebook Black friday .zip
  • 6. Download The Project Files.html

  • 53. Project-52 Sentiment Analysis Project
  • 1. Importing libraries and data
  • 2. Text normalization
  • 3. Lemmatization
  • 4. Data preprocessing
  • 5. Model Building
  • 6.1 Sentiment analysis files.zip
  • 6. Download The Project Files.html

  • 54. Project-53 Parkinsons Disease Prediction Project
  • 1. Importing libraries and data Parkinson Syndrome prediction
  • 2. Understanding the data
  • 3. data visualization
  • 4. Model building part 1
  • 5. Model building part 2-
  • 6.1 Parkinson Disease files.zip
  • 6. Download The Project Files.html

  • 55. Project-54 Fake News Classifier Project
  • 1. Importing libraries and data
  • 2. data preprocessing
  • 3. Text cleaning
  • 4. Vectorizer
  • 5. Model Building
  • 6.1 Fake news classifier files.zip
  • 6. Download The Project Files.html

  • 56. Project-55 Toxic Comment Classifier Project
  • 1. Importing libraries and data
  • 2. Understanding data
  • 3. data visualization and preprocessing
  • 4. Balancing the target column
  • 5. Model building
  • 6. Model evaluation
  • 7.1 Toxic Comment Classifier files.zip
  • 7. Download The Project Files.html

  • 57. Project-56 IMDB Movie Ratings Prediction
  • 1. Importing libraries and data
  • 2. Understanding data
  • 3. data visualization
  • 4. data preprocessing
  • 5. Model building
  • 6.1 IMDB files.zip
  • 6. Download The Project Files.html

  • 58. Project-57 Indian Air Quality Prediction
  • 1. Importing-libraries-and-data
  • 2. Understanding-data
  • 3. data-visualization
  • 4. data-preprocessing
  • 5. Feature-Engineering
  • 6. Model-building-part1
  • 7. Model-building-part2
  • 8.1 Indian Air Quality Files.zip
  • 8. Download The Project Files.html

  • 59. Project-58 Covid-19 Case Analysis
  • 1. Importing-libraries-and-data
  • 2. data-preprocessing-Covid-19-
  • 3. Data-Analysis-part1-Covid-19
  • 4. Data-Analysis-part2-Covid-19
  • 5.1 Covid-19 Analysis Files.zip
  • 5. Download The Project Files.html

  • 60. Project-59 Customer Churning Prediction
  • 1. Importing-libraries-and-data
  • 2. Understanding-data-Customer
  • 3. data-visualization-Customer
  • 4. Model-building-Customer-Churn
  • 5. -Hypertuning-Customer-Churning
  • 6.1 Customer churn files.zip
  • 6. Download The Project Files.html

  • 61. Project-60 Create A ChatBot
  • 1. -Importing-libraries-and-dat
  • 2. Understanding-data-Chatbot
  • 3. data-visualization-Chatbot
  • 4. text-normalization-Chatbot
  • 5. Creating-a-application-Chatbot
  • 6.1 Chatbot files.zip
  • 6. Download The Project Files.html

  • 62. Project-61 Video Game sales Analysis
  • 1. Intro To Video Games sales
  • 2. colab part 1
  • 3. colab part 2
  • 4. Django App - Video Games
  • 5. Heruko App Deployment - Video Games
  • 6.1 Video games sales - Code.zip
  • 6. Download The Project Files.html

  • 63. Project-62 Zomato Restaurant Analysis
  • 1. Zomato Restaurant Analysis
  • 2.1 Zomato+Restaurant+Analysis.zip
  • 2. Download The Project Files.html

  • 64. Project-63 Walmart Sales Forecasting
  • 1. Walmart Sales Forecasting
  • 2.1 Walmart+Sales+Forecasting.zip
  • 2. Download The Project Files.html

  • 65. Project-64 Sonic wave velocity prediction using Signal Processing Techniques
  • 1. Introduction to the project
  • 2. Importing Libraries and DataSet
  • 3. Data Analysis and Prepration
  • 4. Building ML Model
  • 5. Evaluating ML Model
  • 6. Performing Wavelet Transformation
  • 7. Building and Evaluation of model with transformed data
  • 8.1 Sonic log Code and Files.zip
  • 8. Download The Project Files.html

  • 66. Project-65 Estimation of Pore Pressure using Machine Learning
  • 1. Introduction to the project
  • 2. Importing Libraries and Dataset
  • 3. Data Analysis
  • 4. Data Preprocessing.
  • 5. Building ML Models
  • 6. Hypertuning the models and results.
  • 7.1 Pore pressure Code and Files.zip
  • 7. Download The Project Files.html

  • 67. Project-66 Audio processing using ML
  • 1. Introduction to the Project
  • 2. Importing and reading Audio file
  • 3. Extracting Time-Domain features-1
  • 4. Extracting Time-Domain features-2
  • 5. Fourier Transform and it_s applications-1
  • 6. Fourier Transform and Frequency Domain features
  • 7.1 Audio Processing Code and Files.zip
  • 7. Download The Project Files.html

  • 68. Project-67 Text characterisation using Speech recognition
  • 1. Introduction to the Project
  • 2. Importing Libraries and Audio Files.
  • 3. Performing Speech Recognition
  • 4. Performing Text Analysis
  • 5.1 Test using speech Code and Files.zip
  • 5. Download The Project Files.html

  • 69. Project-68 Audio classification using Neural networks
  • 1. Introduction to the project
  • 2. Importing Libraries and Audio Files
  • 3. Extracting audio features 1.
  • 4. Extracting audio features 2
  • 5. Model Development 1
  • 6. Model Development 2
  • 7.1 Audio Classify Code and Files.zip
  • 7. Download The Project Files.html