وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Snowflake Cortex Masterclass 2024 Hands-On!

سرفصل های دوره

by World-Class Snowflake Expert


1. Introduction to Snowflake Cortex
  • 1. Course Structure and Content
  • 2. Welcome to This Course
  • 3.1 GitHub Repository with all the source code for this course.html
  • 3.2 My Medium Blog.html
  • 3.3 Snowflake-Cortex-All-Slides.pdf
  • 3. All About This Course (FAQ Post).html
  • 4.1 Snowflake Preview Features.html
  • 4.2 Snowflake Release Notes.html
  • 4.3 Snowflake Whats New.html
  • 4. Roadmap to Snowflake Cortex
  • 5. Quick Tips SQL Query Without Typing SQL
  • 6. Related Features and Technologies
  • 7.1 Introduction to Snowflake Cortex FAQs.html
  • 7.2 Snowflake Cortex.html
  • 7. Overview of Snowflake Cortex
  • 8. Quick Tips TRANSLATE LLM Function
  • 9. Quick Checkpoint About ...Quick Checkpoints
  • 10. Test Your Knowledge.html

  • 2. ML Pipelines on Datasets (outside Snowflake)
  • 1. About this Section
  • 2. Quick Tips Correlation Heatmap
  • 3. Introduction Machine Learning Basics
  • 4. Introduction ML Pipeline Phases
  • 5. Introduction ML Pipeline Architectures
  • 6. Quick Checkpoint What if You Already Know All This
  • 7. Data Collection Time Series Generation
  • 8. Data Collection Make RegressionClassification
  • 9. Data Collection Realistic Fake Data Generation
  • 10. Data Collection Data Access
  • 11. Data Collection Data Split
  • 12. Data Collection Overview
  • 13. Quick Tips Fake but Realistic Data Generation
  • 14. Data Exploration Overview
  • 15. Data Exploration Correlation Matrix Heatmap
  • 16. Data Exploration Pandas Profiling
  • 17. Quick Checkpoint About Pandas Profiling
  • 18. Data Wrangling Overview
  • 19. Data Wrangling Feature Engineering with Pandas DataFrame
  • 20. Data Wrangling Data Preprocessing with Transformers
  • 21. Data Wrangling Data Preprocessing with Pipeline
  • 22. Quick Checkpoint About Basic ML on Datasets
  • 23. Quick Tips SUMMARIZE LLM Function
  • 24. Model Training Overview
  • 25. Model Training Regression
  • 26. Model Training Classification
  • 27. Model Validation Manual Hyperparameter Optimization
  • 28. Model Validation Manual Cross-Validation
  • 29. Model Validation GridSearchCV for Regression
  • 30. Model Validation RandomizedSearchCV for Classification
  • 31. Quick Checkpoint About Model Validation
  • 32.1 What is the difference between model validation and evaluation.html
  • 32. Model Evaluation Performance Metrics for Regression
  • 33. Model Evaluation Performance Metrics for Classification
  • 34. Model Serving SaveLoad the Trained Model File
  • 35. Quick Tips Signup for a Free Snowflake Trial Account
  • 36. Test Your Knowledge.html

  • 3. ML Pipelines using Snowpark (before Cortex)
  • 1. About this Section
  • 2. Quick Tips Uploading Files in Snowflake
  • 3. Introduction Snowpark Components
  • 4. Introduction Procedures and Functions from SQL
  • 5. Introduction Snowpark for Python
  • 6. Introduction Procedures and Functions from Python
  • 7. Introduction Vectorized User-Defined Functions
  • 8. Introduction Runtimes and Package Versions
  • 9. Introduction Snowpark for ML Pipelines
  • 10. Data Collection Populating with SQL Statements
  • 11. Data Collection Synthetic Data Generation
  • 12. Data Collection Faker Library in Python Worksheet
  • 13. Quick Tips Easiest Way to Connect to Snowflake
  • 14. Data Collection Uploading with SQL Scripts
  • 15. Data Collection Uploading with Python Code
  • 16. Data Collection Uploading from External Stages
  • 17. Data Collection Uploading Other Datasets
  • 18. Data Collection Sample Data Extraction
  • 19. Data Collection Data Split
  • 20. Quick Checkpoint About Ingesting Data in Snowflake
  • 21. Quick Tips Correlation Heatmap in Snowflake
  • 22. Data Exploration Snowsight Charts and Dashboards
  • 23.1 Exploratory Data Analysis with Snowflake and Deepnote.html
  • 23.2 Seamless Machine Learning Workflows with Snowpark & Deepnote.html
  • 23. Data Exploration Snowflake Partner Notebooks
  • 24.1 Build and Deploy ML with Ease Using Snowpark ML, Snowflake Notebooks, and Snowflake Feature Store.html
  • 24.2 Diamond Price Prediction End-to-End Machine Learning with Snowpark ML in Snowflake Notebooks.html
  • 24. Data Exploration Snowflake Notebooks
  • 25. Data Exploration Overview
  • 26. Quick Tips Data Profiling in Snowflake
  • 27. Quick Checkpoint Pandas vs Snowpark Data Frames
  • 28.1 Snowpark Python Top Three Tips for Optimal Performance.html
  • 28. Feature Engineering Pandas vs Snowpark DataFrames
  • 29.1 End to end Machine Learning with Scikit-Learn and Snowpark.html
  • 29. Feature Engineering Using Pandas DataFrames
  • 30.1 How to Create a Complex Query with Snowpark DataFrame in Python.html
  • 30. Feature Engineering Using Snowpark DataFrames
  • 31. Feature Engineering Scalability Check with Python Worksheets
  • 32.1 Snowpark API The Object Model.html
  • 32. Feature Engineering Overview
  • 33.1 How to Generate Snowflake Stored Procs via Python Worksheets.html
  • 33. Quick Checkpoint About the Python Worksheets
  • 34. Quick Tips DataFrame Queries
  • 35. Data Preprocessing When You Cannot Avoid Pandas
  • 36. Model Training Sentiment Analysis in Local Mode
  • 37.1 NLP and ML with Snowpark Python and Streamlit for Sentiment Analysis.html
  • 37. Model Training Sentiment Analysis with Stored Procedure
  • 38. Model Training Overview
  • 39. Model Training Sentiment Analysis with Imported Modules
  • 40.1 Getting Started with Snowpark for Python with Scikit-learn.html
  • 40. Model Training House Predictions with Stored Procedure
  • 41. Model Serving Overview
  • 42. Model Serving Sentiment Predictions with UDFs
  • 43. Model Serving Sentiment Predictions with SQL
  • 44.1 Vectorized UDFs for Batching.html
  • 44. Model Serving House Predictions with Vectorized UDF
  • 45.1 Examining the performance benefits of the Cachetools library.html
  • 45. Model Serving Introduction to Cachetools
  • 46. Model Serving UDFs vs Vectorized UDFs
  • 47. Test Your Knowledge.html

  • 4. ML Pipelines with Snowpark ML (in Cortex)
  • 1. About this Section
  • 2. Quick Tips Python Worksheets
  • 3. Introduction Snowpark ML APIs
  • 4. Data Collection FileSystem
  • 5. Data Collection FileSet and Framework Connectors
  • 6. Data Collection SnowflakeFile
  • 7. Data Collection Overview
  • 8. Distributed Preprocessing Sklearn vs Snowpark ML
  • 9. Distributed Preprocessing Snowpark vs Snowpark ML
  • 10. Distributed Preprocessing Notebook Experiments
  • 11. Distributed Preprocessing Overview
  • 12. Model Training Sklearn vs Snowpark ML
  • 13. Model Training Snowpark vs Snowpark ML
  • 14. Model Training Notebook Experiment
  • 15. Model Training Overview
  • 16. Quick Tips Estimator Pattern in Snowpark ML Modeling
  • 17. Quick Checkpoint About the Roadmap to Snowpark ML
  • 18. Distributed HPO Sklearn vs Snowpark ML
  • 19. Distributed HPO Snowpark vs Snowpark ML
  • 20. Distributed HPO Notebook Experiment
  • 21. Distributed HPO Overview
  • 22. Distributed Metrics Sklearn vs Snowpark ML
  • 23. Distributed Metrics Snowpark vs Snowpark ML
  • 24. Distributed Metrics Notebook Experiment
  • 25. Distributed Metrics Overview
  • 26. Snowflake MLOps Overview
  • 27. Snowflake MLOps Logging a Model
  • 28. Snowflake MLOps The Model Registry
  • 29. Snowflake MLOps Model Predictions from Registered Models
  • 30. Snowflake MLOps Model Types and Providers
  • 31. Quick Tips Prediction Functions from Model Registry
  • 32. Cost of Snowpark ML
  • 33. Quick Tips Warehouse Auto-Suspend Value
  • 34.1 100 Snowflake Cost Optimization Techniques.html
  • 34. Quick Checkpoint About Auto-Suspend in Warehouses
  • 35. Test Your Knowledge.html

  • 5. ML Functions (in Cortex)
  • 1. About this Section
  • 2. Quick Tips Simple Classification through Wizard
  • 3. Introduction ML Classes
  • 4. Introduction ML Class Methods
  • 5. Introduction Snowflake SQL Classes
  • 6. Introduction Snowflake SQL Class Instances
  • 7. Quick Checkpoint About the ML-Powered Functions
  • 8. Classification Binary Classifier
  • 9. Classification Multiclass Classifier
  • 10. Classification Bank Classifier
  • 11. Classification Overview
  • 12. Quick Tips Confusion Heatmap for Classification ML Class
  • 13. Forecasting Time Series Data
  • 14. Forecasting Prepare Sales Data
  • 15. Forecasting Train Model and Predict Sales
  • 16. Forecasting Train Model and Predict Temperatures
  • 17. Forecasting Overview
  • 18. Anomaly Detection Overview
  • 19. Anomaly Detection Detect Outliers in Sales
  • 20. Anomaly Detection Automation with Tasks and Alerts
  • 21. Anomaly Detection Detect Outliers in Temperatures
  • 22. Quick Tips Marking Outliers for Anomaly Detection
  • 23. Quick Checkpoint About Forecasting and Anomaly Detection
  • 24. Gradient Boosting Algorithm
  • 25. Gradient Boosting Classifier & Regressor
  • 26. Contribution Explorer Overview
  • 27. Contribution Explorer What Led to a Change in Sales
  • 28. Contribution Explorer What Makes a Customer Take to a Loan
  • 29. Contribution Explorer How to Survive on Titanic
  • 30.1 Why Snowflakes TOP_INSIGHTS is NOT a Time-Series Function!.html
  • 30. Quick Checkpoint TOP_INSIGHTS is NOT a Time Series Function!
  • 31. Access Rights Introduction to Roles
  • 32. Access Rights Classification
  • 33. Access Rights Forecasting and Anomaly Detection
  • 34. Quick Checkpoint About Access Rights to ML Classes and Functions
  • 35. Cost of ML Functions
  • 36. Test Your Knowledge.html

  • 6. LLM Functions and Extensions (in Cortex)
  • 1. About this Section
  • 2. Quick Tips SENTIMENT LLM Function
  • 3. Introduction to LLM Functions Overview
  • 4. Introduction to LLM Functions Quick Demo
  • 5. Introduction to Data Science Important Milestones
  • 6. Introduction to Data Science Deep Learning Review
  • 7. Introduction to Data Science Generative AI Review
  • 8.1 My TensorFlow Developer Certificate.html
  • 8. Quick Checkpoint About Deep Learning in Snowflake
  • 9. ChatGPT Integrations Local Applications
  • 10. ChatGPT Integrations Snowflake Applications
  • 11. ChatGPT Integrations Overview
  • 12. COMPLETE LLM Functions
  • 13. EXTRACT_ANSWER LLM Function
  • 14. SENTIMENT LLM Function
  • 15. SUMMARIZE LLM Functions
  • 16. TRANSLATE LLM Function
  • 17. Quick Checkpoint About the Specialized LLM Functions
  • 18. Applications with Cortex LLM Functions
  • 19. Access Rights to LLM Functions
  • 20. Cost of LLM Functions
  • 21. Quick Tips Mistral-Large Cost
  • 22. Quick Checkpoint About Mistral Large
  • 23. LLM Extensions in Snowsight
  • 24. Universal Search Overview
  • 25. Snowflake Copilot Quick Demo
  • 26. Snowflake Copilot Overview
  • 27. Snowflake Copilot SQL Query Generation with LangChain and ChatGPT
  • 28. Quick Checkpoint Is Snowflake Copilot Reliable Enough
  • 29. Document AI Overview
  • 30. Document AI Private Data Access with LlamaIndex and ChatGPT
  • 31.1 Top 10 Snowflake Integrations with ChatGPT.html
  • 31. Quick Checkpoint About ChatGPT Integrations
  • 32. Test Your Knowledge.html

  • 7. Wrapping Up
  • 1.1 GitHub Repository for this course.html
  • 1. Setup Instructions GitHub Project and VSCode
  • 2.1 Signup for a Free Snowflake Trial Account.html
  • 2. Setup Instructions Free Snowflake Trial Account
  • 3.1 OpenAI Developer Platform.html
  • 3. Setup Instructions ChatGPTOpenAI Account
  • 4. Congratulations, You Made It!
  • 5. Bonus Lecture.html
  • 67,300 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 38471
    حجم: 11125 مگابایت
    مدت زمان: 1213 دقیقه
    تاریخ انتشار: 22 تیر 1403
    دسته بندی محصول
    طراحی سایت و خدمات سئو

    67,300 تومان
    افزودن به سبد خرید