وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Machine Learning in R & Predictive Models | 3 Courses in 1

سرفصل های دوره

Supervised & unsupervised machine learning in R, clustering in R, predictive models in R by many labs, understand theory


01 - Introduction
  • 001 Introduction
  • 002 Motivation for the course Why to use Machine Learning for Predictions
  • 003 What is Machine Leraning and its main types
  • 004 Overview of Machine Leraning in R

  • 02 - Software used in this course R-Studio and Introduction to R
  • 001 Introduction to Section 2
  • 002 What is R and RStudio
  • 003 How to install R and RStudio in 2021
  • 004 Lab Install R and RStudio in 2021
  • 005 Introduction to RStudio Interface
  • 006 Lab Get started with R in RStudio

  • 03 - R Crash Course - get started with R-programming in R-Studio
  • 001 Introduction to Section 3
  • 002 Lab Installing Packages and Package Management in R
  • 003 Variables in R and assigning Variables in R
  • 004 Lab Variables in R and assigning Variables in R
  • 005 Overview of data types and data structures in R
  • 006 Lab data types and data structures in R
  • 007 Vectors operations in R
  • 008 Data types and data structures Factors
  • 009 Dataframes overview
  • 010 Functions in R - overview
  • 011 Lab For Loops in R
  • 012 Read Data into R
  • Files.zip

  • 04 - Fundamentals of predictive modelling with Machine Learning Thoery
  • 001 Overview of prediction process
  • 002 Components of the prediction models and trade-offs in prediction
  • 003 Lab your first prediction model in R
  • 004 Overfitting, sample errors in Machine Learning modelling in R
  • 005 Lab Overfitting, sample errors in Machine Learning modelling in R
  • 006 Study design for predictive modelling with Machine Learning
  • 007 Type of Errors and how to measure them
  • 008 Cross Validation in Machine Learning Models
  • 009 Data Selection for Machine Learning models
  • Files.zip

  • 05 - Unsupervised Machine Learning and Cluster Analysis in R
  • 001 Unsupervised Learning & Clustering theory
  • 002 Hierarchical Clustering Example
  • 003 Hierarchical Clustering Lab
  • 004 Hierarchical Clustering Merging points
  • 005 Heat Maps theory
  • 006 Heat Maps Lab
  • 007 Example K-Means Clustering in R Lab
  • 008 K-means clustering Application to email marketing
  • 009 Heatmaps to visualize K-Means Results in R Examplery Lab
  • 010 Selecting the number of clusters for unsupervised Clustering methods (K-Means)
  • 011 How to assess a Clustering Tendency of the dataset
  • 012 Assessing the performance of unsupervised learning (clustering) algorithms
  • Files.zip

  • 06 - Supervised Machine Learning in R Classification in R
  • 001 Overview of functionality of Caret R-package
  • 002 Supervised Machine Learning & KNN Overview
  • 003 Lab Supervised classification with K Nearest Neighbours algorithm in R
  • 005 Theory Confusion Matrix
  • 006 Lab Calculating Classification Accuray for logistic regression model
  • 007 Lab Receiver operating characteristic (ROC) curve and AUC
  • Files.zip

  • 07 - Supervised Machine Learning in R Linear Regression Analysis
  • 001 Overview of Regression Analysis
  • 002 Graphical Analysis of Regression Models
  • 003 Lab your first linear regression model
  • 004 Correlation in Regression Analysis in R Lab
  • 005 How to know if the model is best fit for your data - An overview
  • 006 Linear Regression Diagnostics
  • 007 AIC and BIC
  • 008 Evaluation of Prediction Model Performance in Supervised Learning Regression
  • 009 Lab Predict with linear regression model & RMSE as in-sample error
  • 010 Prediction model evaluation with data split out-of-sample RMSE
  • Files.zip

  • 08 - More types of regression models in R
  • 001 Lab Multiple linear regression - model estimation
  • 002 Lab Multiple linear regression - prediction
  • 003 Non-linear Regression Essentials in R Polynomial and Spline Regression Models
  • 004 Lab Polynomial regression in R
  • 005 Lab Log transformation in R
  • 006 Lab Spline regression in R
  • 007 Lab Generalized additive models in R
  • Files.zip

  • 09 - Working With Non-Parametric and Non-Linear Data (Supervised Machine Learning)
  • 001 Classification and Decision Trees (CART) Theory
  • 002 Lab Decision Trees in R
  • 003 Random Forest Theory
  • 004 Lab Random Forest in R
  • 006 Lab Machine Learning Models' Comparison & Best Model Selection
  • 008 Introduction to Model Selection Essentials in R
  • 009 Final Project Assignment
  • Files.zip

  • 10 - BONUS
  • 001 BONUS
  • 139,000 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    افزودن به سبد خرید
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 41170
    حجم: 2863 مگابایت
    مدت زمان: 458 دقیقه
    تاریخ انتشار: ۱۵ آبان ۱۴۰۳
    طراحی سایت و خدمات سئو

    139,000 تومان
    افزودن به سبد خرید