وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Calculus: Complete Course

سرفصل های دوره

From Beginner to Expert - Calculus Made Easy, Fun and Beautiful


1 - Introduction
  • 1 - Introduction
  • 2 - Whats in the Course

  • 2 - Introduction to Calculus
  • 3 - What is Calculus
  • 4 - Intuitive Limits
  • 5 - Terminology
  • 6 - The Derivative of a Polynomial at a Point
  • 7 - The Derivative of a Polynomial in General
  • 8 - The Derivative of xn
  • 9 - The Derivative of xn Proof
  • 10 - Negative and Fractional Powers

  • 3 - Differentiation Key Skills
  • 12 - Finding the Gradient at a Point
  • 13 - Tangents
  • 14 - Normals
  • 15 - Stationary Points
  • 16 - Increasing and Decreasing Functions
  • 17 - Second Derivatives
  • 18 - Optimisation Part 1
  • 19 - Optimisation Part 2

  • 4 - Integration Key Skills
  • 20 - Reverse Differentiation
  • 21 - Families of Functions
  • 22 - Finding Functions
  • 23 - Integral Notation
  • 24 - Integration as Area An Intuitive Approach
  • 25 - Integration as Area An Algebraic Proof
  • 26 - Areas Under Curves Part 1
  • 27 - Areas Under Curves Part 2
  • 28 - Areas Under the XAxis
  • 29 - Areas Between Functions

  • 5 - Applications of Calculus
  • 30 - Motion
  • 31 - Probability

  • 6 - Calculus with Chains of Polynomials
  • 32 - fxn Spotting a Pattern
  • 33 - Differentiating fxn An Algebraic Proof
  • 34 - The Chain Rule for fxn
  • 35 - Using the Chain Rule for fxn
  • 36 - Reverse Chain Rule for fxn
  • 37 - Reverse Chain Rule for fxn Definite Integrals

  • 7 - Calculus with Exponentials and Logarithms
  • 38 - Introduction to Exponentials
  • 39 - Introduction to Logarithms
  • 40 - THE Exponential Function
  • 41 - Differentiating Exponentials
  • 42 - Differentiating Chains of Exponentials Part 1
  • 43 - Differentiating Chains of Exponentials Part 2
  • 44 - The Natural Log and its Derivative
  • 45 - Differentiating Chains of Logarithms
  • 46 - Reverse Chain Rule for Exponentials
  • 47 - Reverse Chain Rule for Logarithms

  • 8 - Calculus with Trigonometric Functions
  • 48 - Radians
  • 49 - Small Angle Approximations
  • 50 - Differentiating Sinx and Cosx
  • 51 - OPTIONAL Proof of the Addition Formulae
  • 52 - Differentiating Chains of Sinx and Cosx
  • 53 - Reverse Chain Rule for Trig Functions
  • 54 - Integrating Powers of Sinx and Cosx

  • 9 - Advanced Techniques in Differentiation
  • 55 - The Chain Rule
  • 56 - The Product Rule An Intuitive Approach
  • 57 - Using the Product Rule
  • 58 - Algebraic Proof of the Product Rule
  • 59 - The Quotient Rule
  • 60 - Derivatives of All Six Trigonometric Functions
  • 61 - Implicit Differentiation
  • 62 - Stationary and Critical Points

  • 10 - Advanced Techniques is Integration
  • 63 - Integrating the Squares of All Trigonometric Functions
  • 64 - Integrating Products of Trigonometric Functions
  • 65 - Reverse Chain Rule
  • 66 - Introduction to Partial Fractions
  • 67 - Integrating with Partial Fractions
  • 68 - Integration by Parts Part 1
  • 69 - Integration by Parts Part 2
  • 70 - Integration by Parts Part 3
  • 71 - Integration by Substitution Part 1
  • 72 - Integration by Substitution Part 2
  • 73 - Integration by Substitution Part 3
  • 74 - Integration by Substitution Part 4
  • 75 - Area of a Circle Proof with Calculus
  • 76 - Reduction Formulae Part 1
  • 77 - Reduction Formulae Part 2

  • 11 - Advanced Applications in Differentiation
  • 78 - Connected Rates of Changes
  • 79 - Newtons Method
  • 80 - LHopitals Rules Part 1
  • 81 - LHopitals Rule Part 2
  • 82 - Maclaurin Series Part 1
  • 83 - Maclaurin Series Part 2
  • 84 - The Leibnitz Formula
  • 85 - Taylor Series

  • 12 - Advanced Applications in Integration
  • 86 - Volumes of Revolution Around the XAxis Part 1
  • 87 - Volumes of Revolution Around the XAxis Part 2
  • 88 - Volumes of Revolution Around the YAxis
  • 89 - Surface Areas of Revolution Part 1
  • 90 - Surface Areas of Revolution Part 2
  • 91 - Arc Lengths

  • 13 - Alternative Coordinate Systems
  • 92 - Parametric Equations Introduction
  • 93 - Converting Parametric Equations into Cartesian Equations
  • 94 - Differentiating Parametric Equations
  • 95 - Integrating Parametric Equations
  • 96 - Volumes of Revolution with Parametric Equations
  • 97 - Surface Areas and Arc Lengths of Parametric Equations
  • 98 - Polar Coordinates Introduction
  • 99 - Converting Between Polar and Cartesian Form
  • 100 - Differentiating Polar Curves
  • 101 - How to Integrate Polar Curves
  • 102 - Integrating Polar Curves

  • 14 - First Order Differential Equations
  • 103 - What is a Differential Equation
  • 104 - Separating Variables Part 1
  • 105 - Separating Variables Part 2
  • 106 - Separating Variables Modelling Part 1
  • 107 - Separating Variables Modelling Part 2
  • 108 - Integrating Factors

  • 15 - Second Order Differential Equations
  • 109 - Homogeneous Second Order Differential Equations Part 1
  • 110 - Homogeneous Second Order Differential Equations Part 2
  • 111 - Homogeneous Second Order Differential Equations Part 3
  • 112 - NonHomogeneous Second Order Differential Equations
  • 113 - Boundary Conditions
  • 114 - Coupled Differential Equations Part 1
  • 115 - Coupled Differential Equations Part 2
  • 116 - Reducible Differential Equations Part 1
  • 117 - Reducible Differential Equations Part 2
  • 54,900 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    مدرس:
    شناسه: 38653
    حجم: 7319 مگابایت
    مدت زمان: 1206 دقیقه
    تاریخ انتشار: 28 تیر 1403
    طراحی سایت و خدمات سئو

    54,900 تومان
    افزودن به سبد خرید