وب سایت تخصصی شرکت فرین
دسته بندی دوره ها

Bayesian Optimization in Action, Video Edition

سرفصل های دوره
  • 001. Chapter 1. Introduction to Bayesian optimization
  • 002. Chapter 1. Introducing Bayesian optimization
  • 003. Chapter 1. What will you learn in this book
  • 004. Chapter 1. Summary
  • 005. Part 1. Modeling with Gaussian processes
  • 006. Chapter 2. Gaussian processes as distributions over functions
  • 007. Chapter 2. Modeling correlations with multivariate Gaussian distributions and Bayesian updates
  • 008. Chapter 2. Going from a finite to an infinite Gaussian
  • 009. Chapter 2. Implementing GPs in Python
  • 010. Chapter 2. Exercise
  • 011. Chapter 2. Summary
  • 012. Chapter 3. Customizing a Gaussian process with the mean and covariance functions
  • 013. Chapter 3. Incorporating what you already know into a GP
  • 014. Chapter 3. Defining the functional behavior with the mean function
  • 015. Chapter 3. Defining variability and smoothness with the covariance function
  • 016. Chapter 3. Exercise
  • 017. Chapter 3. Summary
  • 018. Part 2. Making decisions with Bayesian optimization
  • 019. Chapter 4. Refining the best result with improvement-based policies
  • 020. Chapter 4. Finding improvement in BayesOpt
  • 021. Chapter 4. Optimizing the expected value of improvement
  • 022. Chapter 4. Exercises
  • 023. Chapter 4. Summary
  • 024. Chapter 5. Exploring the search space with bandit-style policies
  • 025. Chapter 5. Being optimistic under uncertainty with the Upper Confidence Bound policy
  • 026. Chapter 5. Smart sampling with the Thompson sampling policy
  • 027. Chapter 5. Exercises
  • 028. Chapter 5. Summary
  • 029. Chapter 6. Using information theory with entropy-based policies
  • 030. Chapter 6. Entropy search in BayesOpt
  • 031. Chapter 6. Exercises
  • 032. Chapter 6. Summary
  • 033. Part 3. Extending Bayesian optimization to specialized settings
  • 034. Chapter 7. Maximizing throughput with batch optimization
  • 035. Chapter 7. Computing the improvement and upper confidence bound of a batch of points
  • 036. Chapter 7. Exercise 1 Extending TS to the batch setting via resampling
  • 037. Chapter 7. Computing the value of a batch of points using information theory
  • 038. Chapter 7. Exercise 2 Optimizing airplane designs
  • 039. Chapter 7. Summary
  • 040. Chapter 8. Satisfying extra constraints with constrained optimization
  • 041. Chapter 8. Constraint-aware decision-making in BayesOpt
  • 042. Chapter 8. Exercise 1 Manual computation of constrained EI
  • 043. Chapter 8. Implementing constrained EI with BoTorch
  • 044. Chapter 8. Exercise 2 Constrained optimization of airplane design
  • 045. Chapter 8. Summary
  • 046. Chapter 9. Balancing utility and cost with multifidelity optimization
  • 047. Chapter 9. Multifidelity modeling with GPs
  • 048. Chapter 9. Balancing information and cost in multifidelity optimization
  • 049. Chapter 9. Measuring performance in multifidelity optimization
  • 050. Chapter 9. Exercise 1 Visualizing average performance in multifidelity optimization
  • 051. Chapter 9. Exercise 2 Multifidelity optimization with multiple low-fidelity approximations
  • 052. Chapter 9. Summary
  • 053. Chapter 10. Learning from pairwise comparisons with preference optimization
  • 054. Chapter 10. Formulating a preference optimization problem and formatting pairwise comparison data
  • 055. Chapter 10. Training a preference-based GP
  • 056. Chapter 10. Preference optimization by playing king of the hill
  • 057. Chapter 10. Summary
  • 058. Chapter 11. Optimizing multiple objectives at the same time
  • 059. Chapter 11. Finding the boundary of the most optimal data points
  • 060. Chapter 11. Seeking to improve the optimal data boundary
  • 061. Chapter 11. Exercise Multiobjective optimization of airplane design
  • 062. Chapter 11. Summary
  • 063. Part 4. Special Gaussian process models
  • 064. Chapter 12. Scaling Gaussian processes to large datasets
  • 065. Chapter 12. Automatically choosing representative points from a large dataset
  • 066. Chapter 12. Optimizing better by accounting for the geometry of the loss surface
  • 067. Chapter 12. Exercise
  • 068. Chapter 12. Summary
  • 069. Chapter 13. Combining Gaussian processes with neural networks
  • 070. Chapter 13. Capturing similarity within structured data
  • 071. Chapter 13. Using neural networks to process complex structured data
  • 072. Chapter 13. Summary
  • 67,300 تومان
    بیش از یک محصول به صورت دانلودی میخواهید؟ محصول را به سبد خرید اضافه کنید.
    خرید دانلودی فوری

    در این روش نیاز به افزودن محصول به سبد خرید و تکمیل اطلاعات نیست و شما پس از وارد کردن ایمیل خود و طی کردن مراحل پرداخت لینک های دریافت محصولات را در ایمیل خود دریافت خواهید کرد.

    ایمیل شما:
    تولید کننده:
    شناسه: 38102
    حجم: 13049 مگابایت
    مدت زمان: 716 دقیقه
    تاریخ انتشار: 9 تیر 1403
    طراحی سایت و خدمات سئو

    67,300 تومان
    افزودن به سبد خرید